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For a von Neumann algebra R we determine the commutant of the set {u ⊗ u :
u ∈ R, u unitary} and normal functionals on R⊗R that are invariant under all
automorphisms implemented by u ⊗ u for u unitary in R. For a finite group G

of unitary operators on a Hilbert space H implementing automorphisms of a von
Neumann algebra S ⊆ B(H) we describe the relative commutant of S in the von
Neumann algebra generated by S and G.

© 2021 Published by Elsevier Inc.

1. Introduction

In quantum information theory it turned out to be interesting to know all operators on B(H)⊗B(H),

where H is a Hilbert space, that commute with all operators of the form u ⊗ u for u ∈ B(H) unitary.

Specifically, if H is finite dimensional, it was proved that only such operators are linear combinations of

the identity 1 and the flip V ∈ B(H)⊗B(H), where V ∈ B(H ⊗ H) = B(H)⊗B(H) is determined by

V (ξ⊗ η) = η⊗ ξ (ξ, η ∈ H) (see [17], [9], [14, Section 7.5]). Since V 2 = 1 = V ∗, the set W ∗(V ) := C1 + CV

is a von Neumann algebra and by the von Neumann bicommutant theorem this result is equivalent to the

statement that the commutant of W ∗(V ) is, as a von Neumann algebra, generated by operators of the form

u ⊗ u, where u is in the unitary group of B(H). In the next section we give a short proof of this result,

valid also in the case when H is infinite dimensional, in fact we consider the case where B(H) is replaced

by any von Neumann algebra R. Then we generalize this to the case when the flip automorphism of R⊗R

is replaced by a finite group of automorphisms of a von Neumann algebra. In the special case, when H is

finite-dimensional, B(H)⊗B(H) can be identified with the space L(B(H)) of all linear maps on B(H) and

it turns out that the above mentioned commutation result can be easily deduced also from a theorem of

Brešar [3] concerning commuting mappings. In fact, in Section 3 we will consider a more general situation of
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commuting maps from a von Neumann algebra R into an R-bimodule. As an application we determine all

bounded linear functionals on the operator space projective tensor product R⊗̂R that are invariant under

all maps of the form x 7→ (u⊗ u)x(u⊗ u)∗, where u ∈ R is unitary, and also all normal such functionals on

the von Neumann algebra R⊗R.

2. The relative commutant of the flip and of a finite unitary group

Let V ∈ B(H ⊗ H) be the flip, that is V (ξ ⊗ η) = η ⊗ ξ (ξ, η ∈ H), let F be the automorphism of

B(H)⊗B(H) = B(H ⊗ H) defined by F(x) = V xV and FR its restriction to R⊗R, where R ⊆ B(H) is a

von Neumann algebra. Denote S = (R⊗R)′ so that

S ′ = R⊗R,

and let AR be the von Neumann subalgebra of S ′ consisting of all fixed points of FR. Since FR(a⊗b) = b⊗a

for all a, b ∈ R, AR contains the weak* closure of the set of all finite sums of the form
∑

i(ai ⊗ bi + bi ⊗ ai)

(ai, bi ∈ R). Conversely, if w ∈ S ′ is fixed by FR, then w = 1
2(w + FR(w)), hence, approximating w by

finite sums of the form
∑

i ai ⊗ bi (ai, bi ∈ R), we deduce the following simple lemma.

Lemma 2.1. The fixed point algebra AR of FR is equal to the weak* closure of the set of all finite sums of

the form
∑

i(ai ⊗ bi + bi ⊗ ai), where ai, bi ∈ R.

Denote by Ru the unitary group of R and set

UR := {u⊗ u : u ∈ Ru}.

Lemma 2.2. A′
R = U ′

R, hence AR is generated by UR as a von Neumann algebra.

Proof. By Lemma 2.1 UR ⊆ AR, hence A′
R ⊆ U ′

R, so we need to prove only that each x ∈ U ′
R is also in

A′
R. But x commutes in particular with all elements of the form eith ⊗ eith, where h ∈ R is hermitian and

t ∈ R. Using the Taylor expansion eith = 1 + ith− 1
2 t

2h2 + . . . we see by comparing the linear terms in the

identity

x(eith ⊗ eith) = (eith ⊗ eith)x

that

x(1 ⊗ h+ h⊗ 1) = (1 ⊗ h+ h⊗ 1)x.

Then x must commute also with all elements in the von Neumann algebra generated by all elements of the

form 1 ⊗ h+ h⊗ 1, where h ∈ R is hermitian, and by Lemma 2.1 this von Neumann algebra is easily seen

to be just AR. 2

Observe that by the definitions of FR and AR we have that AR is just the relative commutant of V in

S ′, that is AR = (V )′ ∩ S ′, hence by Lemma 2.2

U ′
R = ((V )′ ∩ S ′)′ = (V )′′ ∨ S (= the von Neumann algebra generated by (V )′′ ∪ S). (2.1)

By the Tomita commutation theorem ([10], [15]) we have S = (R⊗R)′ = R′⊗R′. Further, since V = V ∗

and V 2 = 1, the space C1 + CV is a von Neumann algebra and so (V )′′ = C1 + CV . Since V SV = S, it
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follows easily that the space S + SV is a self-adjoint subalgebra of B(H)⊗B(H), containing V and S. It

follows from a more general result below (Theorem 2.4) that S + SV is weak* closed, hence S + SV ⊇ U ′
R

by (2.1). Since V and all elements of S commute with all u ⊗ u, we also have that S + SV ⊆ U ′
R, so this

proves the following corollary, which in the special case of finite-dimensional situation was proved (by a

different method) in [14, p. 105–108] and [17], [9].

Corollary 2.3. {u⊗ u : u unitary in R}′ = S1 + SV , where S = R′⊗R′ and V is the flip on B(H)⊗B(H)

(that is, V (ξ ⊗ η = η ⊗ ξ, ξ, η ∈ H).

Let us now consider a more general situation, where R⊗R is replaced by a von Neumann algebra S

acting on a Hilbert space H and the flip V is replaced by a finite group G of unitary operators on H such

that uSu∗ = S for all u ∈ G.

Theorem 2.4. If G is finite, the subspace SG of B(H) is a von Neumann algebra.

Proof. Let A be the implemented crossed product of S by G (as defined in [10, 13.1.3]). Thus, if n is

the cardinality of G and the Hilbert space H ⊗ ℓ2(G) is identified naturally with Hn (and consequently

B(H ⊗ ℓ2(G)) with Mn(B(H))), A consists of all operator matrices of the form [gh−1s(gh−1)], where s :

G → S is any function. (Thus the entry on the position (g, h) is gh−1s(gh−1), where g, h ∈ G.) The map

π : A → B(H), π([gh−1s(gh−1)]) =
∑

t∈G

ts(t)

is easily verified to be a ∗-homomorphism, mapping A onto GS. Further, evidently π is weak* continuous,

hence GS is a von Neumann algebra. 2

The commutant of GS is G′ ∩ S ′, which is just the fixed point algebra of G in S ′, that is (GS)′ = {x ∈

S ′ : gxg−1 = x ∀g ∈ G}, and coincides also with the range of the projection x 7→ 1
|G|

∑

g∈G gxg
−1 (x ∈ S ′).

To determine concretely the relative commutant of S in GS, we first recall a known decomposition of an

automorphism of a von Neumann algebra.

Proposition 2.5. [10, 12.4.17, 12.4.18] Let S ⊆ B(H) be a von Neumann algebra and v ∈ B(H) a unitary

such that vSv∗ = S. Then there exists a unique central projection p ∈ S, commuting with v, such that the

automorphism x 7→ vxv∗ restricted to Sp is inner, say implemented by a unitary u ∈ Sp, hence vp = uu′

for a unitary u′ ∈ S ′p, while the action of v on Sp⊥ is free in the sense that sv ∈ S ′p⊥ (s ∈ S) implies that

sp⊥ = 0.

Now we can describe the relative commutant of S in GS.

Theorem 2.6. Let S ⊆ B(H) be a von Neumann algebra, Z the center of S and G a finite group of unitary

operators on H such that gSg∗ = S for all g ∈ G. For each g ∈ G let pg be the largest projection in Z such

that the automorphism x 7→ gxg∗ on S is inner, so that

gpg = ugu
′
g (2.2)

for some unitaries ug ∈ pgS and u′
g ∈ pgS ′ (see Proposition 2.5). Then

GS ∩ S ′ = {
∑

g∈G

cgu
′
g : cg ∈ Z}.
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Proof. Since Z ⊆ S ′ and from (2.2) we have cgu
′
g = u′

gcg = gpgu
∗
gcg ∈ GS, it follows that each element of

the form
∑

g∈G cgu
′
g (where cg ∈ Z) is contained in GS ∩S ′. To prove the reverse inclusion, let y ∈ GS ∩S ′.

As in Theorem 2.4, let A ⊆ Mn(B(H)) be the implemented crossed product of S by G and let π : A → GS

be the natural ∗-epimorphism. Since there is a faithful (normal) conditional expectation from A onto S of

finite index (namely, the map E : [gh−1s(gh−1)] 7→ s(e), which can be easily verified to satisfy the finite

index condition Ex ≥ cx ∀xA+ for some constant c > 0, since n is finite), the inclusion S ⊆ A has the

relative Dixmier property by [13]. This means that for each x ∈ A the closure of the convex hull of the set

of all elements of the form uxu∗, where u ∈ S is unitary, intersects the commutant of S in A, hence also

the commutant of S in Mn(B(H)), which is Mn(S ′). Choosing x ∈ A so that π(x) = y, it follows that there

exists t ∈ A ∩ Mn(S ′) such that π(t) = y. Since t ∈ A, t is of the form t = [gh−1s(gh−1] for a function

s : G → S. Since t ∈ Mn(S ′), we have that gh−1s(gh−1) ∈ S ′ for all g, h ∈ G, which means just that

gs(g) ∈ S ′ for all g ∈ G. With pg, ug and u′
g as in the statement of the theorem, we have by Proposition 2.5

that p⊥
g s(g) = 0, hence

gs(g) = gpgs(g) = u′
gugs(g).

Since gs(g) ∈ S ′, it follows that u′
gugs(g) ∈ S ′, hence ugs(g) ∈ u′∗

g S ′ ⊆ S ′. But, since ugs(g) ∈ S, this

implies that the element cg := ugs(g) is in Z. Then pgs(g) = pgu
∗
gcg = u∗

gcg. Finally, we compute that

y = π(t) =
∑

g∈G

gs(g) =
∑

g∈G

gpgs(g) =
∑

g∈G

u′
gugs(g)

=
∑

g∈G

u′
gugpgs(g) =

∑

g∈G

u′
gugu

∗
gcg =

∑

g∈G

u′
gpgcg =

∑

g∈G

cgu
′
g. 2

3. Commuting mappings

The tensor product R⊗R is dual to the operator space projective tensor product R♯⊗̂R♯, where R♯ is

the predual of R ([6, p. 136], [11, p. 49]), and is therefore completely isometrically isomorphic to the space

CB(R♯,R) of all completely bounded maps from R♯ to R, by the map

ι : CB(R♯,R) → (R♯⊗̂R♯)
♯ = R⊗R, ι(ϕ)(ω ⊗ ρ) = (ϕ(ω))(ρ) (∀ω, ρ ∈ R♯). (3.1)

Under this isomorphism, the condition that an element of w ∈ R⊗R commutes with all elements of the

form u ⊗ u, where u ∈ R is unitary, translates into the condition that the corresponding map ϕ = ι−1(w)

satisfies

ϕ(u∗ωu) = u∗ϕ(ω)u (∀ω ∈ R♯, ∀u ∈ R unitary).

Putting in this identity u = eith = 1 + ith + . . ., where h = h∗ ∈ R and t ∈ R, and comparing the linear

terms on both sides, it follows that

ϕ([ω, a]) = [ϕ(ω), a] (∀ω ∈ R♯,∀a ∈ R), (3.2)

where [ω, a] denotes the commutator ωa− aω. If R is finite dimensional, then R♯ can be identified with R

and the condition (3.2) simply means that [ϕ(a), b] = ϕ([a, b]) for all a, b ∈ R. In particular

[ϕ(a), a] = 0 (∀a ∈ R), (3.3)

that is, ϕ(a) commutes with a. Note that replacing in (3.3) a with a+ b we get that
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[ϕ(a), b] = [a, ϕ(b)] (∀a, b ∈ R). (3.4)

Additive mappings satisfying (3.3) on rings were characterized by Brešar [3] and called commuting mappings

(see also [5, Example 1.5]). In fact, his proof in [3, Lemma 2.2, Corollary 2.3, 1. line on p. 504] works also

for mappings from a ring R into any R-bimodule and shows the following proposition.

Proposition 3.1. Let R be a unital ring such that the ideal generated by all commutators [a, b] (a, b ∈ R) is

equal to R and let X be an R-bimodule. Let

ZX := {x ∈ X : ax = xa ∀a ∈ R}

be the center of X . Then each additive mapping ϕ : R → X satisfying (3.3) is of the form

ϕ(a) = ca+ ψ(a), (3.5)

where c ∈ ZX ∩ RX R and ψ is an additive map from R to ZX .

We note that Proposition 3.1 applies in particular to unital C∗-algebras which have no tracial states since

in such C∗-algebras each element is a finite sum of commutators by [12].

In the special case X = R it is obvious from (3.4) that ϕ maps the center of a ring R into itself. The

following example shows that this does not hold any more for mappings into general R-bimodules.

Example 3.2. Let R be the subalgebra of M3(C) (3 × 3 complex matrices) consisting of all matrices of the

form







x y z

0 x 0

0 0 x






.

Define a map ϕ : R → M3(C) by

ϕ













x y z

0 x 0

0 0 x












=







y 0 0

0 y z

0 0 0






.

It can be verified that R is abelian, that ϕ satisfies the condition (3.3), but nevertheless

ϕ













0 0 1

0 0 0

0 0 0












does not commute with







0 1 0

0 0 0

0 0 0






.

A normal dual bimodule over a von Neumann algebra R is a dual Banach space Y such that the module

operations Y ∋ y 7→ ay, ya ∈ Y and R ∋ a 7→ ay, ya ∈ Y are weak* continuous (only the weak* continuity

of the last two operations will be needed in the proof of the next theorem). In the special case X = R the

following theorem was proved by Brešar [3]; commuting of maps on C∗-algebras were studied by Ara and

Mathieu [1], [2].

Theorem 3.3. Let X be a subbimodule of a normal dual bimodule over a von Neumann algebra R. Every

bounded linear map ϕ : R → X , satisfying (3.3), is of the form (3.5), where ZX is defined as in Proposi-

tion 3.1, c ∈ ZX and ψ is a (bounded linear) map from R into ZX .
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Proof. If R has no abelian central summands, then the theorem is a special case of Proposition 3.1.

Suppose now that R is abelian. If R is generated by one element a0 (which is the case if R acts on

a separable Hilbert space by [15, p. 112]), then it follows from (3.3) (and the weak* continuity of the

multiplications r 7→ rx, xr) that ϕ(a0) commutes with all elements of R, that is ϕ(a0) ∈ ZX . By (3.4) we

have [ϕ(a), a0] = [a, ϕ(a0)] = 0 ∀a ∈ R. Since R is generated by a0, this implies that ϕ(a) commutes with

all elements of R, that is, ϕ(a) ∈ ZX . For a general abelian R, a von Neumann subalgebra Ra,b generated

by any two elements a, b is singly generated (it is generated by a countable family of commuting projections,

hence an argument from [15, p. 112] shows that it is singly generated). If we apply the above argument to

Ra,b instead of R, we see that [ϕ(a), b] = 0. Since this holds for all b ∈ R, this means that ϕ(a) ∈ ZX . This

proves that ϕ(R) ⊆ ZX if R is abelian.

In general, let p be the central projection in R such that pR is abelian and p⊥R has no non-zero abelian

central summands. Then pR is contained in the center Z of R. We claim that ϕ(Z) ⊆ ZX . To prove this, let

h = h∗ ∈ R. Applying what we have proved in the previous paragraph to the abelian von Neumann algebra

W ∗(Z, h) generated by Z ∪ {h} and to X as an W ∗(Z, h)-bimodule, we conclude that [ϕ(z), h] = 0 for all

z ∈ Z. Thus [ϕ(z), h + ik] = 0 for all self-adjoint h, k ∈ R, meaning that ϕ(z) ∈ ZX , that is, ϕ(Z) ⊆ ZX .

Further, any element z in the center of p⊥R is also in the center Z of R, hence ϕ(z) ∈ ZX . Since p⊥R has

no non-zero abelian central summands, by Proposition 3.1 there exists

c ∈ p⊥Xp⊥ satisfying cp⊥a = p⊥ac ∀a ∈ R, (3.6)

such that the mapping

ψ : R → X , ψ(a) = ϕ(a) − ca

satisfies

[ψ(p⊥a), p⊥b] = 0 ∀a, b ∈ R. (3.7)

Then c ∈ ZX since [c, a] = [p⊥cp⊥, a] = [p⊥cp⊥, p⊥ap⊥] = 0 for all a ∈ R by (3.6). Further, since pa ∈ Z

and therefore ϕ(pa) ∈ ZX by what we have already proved, we have

[ψ(pa), b] = [ϕ(pa), b] − [cpa, b] = [ϕ(pa), b] = 0 ∀b ∈ R. (3.8)

Finally, from (3.8), (3.7), (3.4) and the facts c ∈ ZX , pR ⊆ Z (hence ϕ(pR) ⊆ ZX ) we conclude that

[ψ(a), b] = [ψ(p⊥a), b] = [ψ(p⊥a), pb] = [ϕ(p⊥a), pb] − [cp⊥a, pb]

= [ϕ(p⊥a), pb] = [p⊥a, ϕ(pb)] = 0.

Thus ψ(R) ⊆ ZX . 2

Corollary 3.4. Every bounded linear map ϕ : R → X satisfying

ϕ([a, b]) = [ϕ(a), b] ∀a, b ∈ R (3.9)

is of the form (3.5), where c ∈ ZX and ψ : R → ZX annihilates all commutators [a, b] (a, b ∈ R). Thus

ψ annihilates the properly infinite part of R, while the restriction of ψ to the finite part Rf of R is of the

form ψ|Rf = ρ ◦ τ , where τ is the central trace on Rf and ρ is a mapping from the center Zf of Rf into

ZX .
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Proof. By Theorem 3.3 ϕ is of the form (3.5) and, since ψ(R) ⊆ ZX , it follows from (3.9) that

ψ([a, b]) = [ψ(a), b] = 0 ∀a, b ∈ R.

Since each element in a properly infinite von Neumann algebra is a sum of two commutators by [8], ψ

annihilates the properly infinite part of R. On the other hand the restriction of ψ to the finite part Rf of

R factors as ψ|Rf = ψ̃η, where η : Rf → Rf/[Rf ,Rf ] is the quotient map and ψ̃ : Rf/[Rf ,Rf ] → ZX is

the map induced by ψ|Rf ; here [Rf ,Rf ] denotes the (closed) subspace generated by the commutators in

Rf . By [7] each element with the central trace 0 in a finite von Neumann algebra is a sum of finitely many

commutators, hence the central trace τ on Rf maps Rf/[Rf ,Rf ] isomorphically onto the center Zf of Rf ,

so that by the open mapping theorem the inverse map σ : Zf → Rf/[Rf ,Rf ] is bounded. Finally observe

that ψ|Rf = (ψ̃σ)τ and set ρ = ψ̃σ. 2

After the first version of this paper had already been sent to publication M. Brešar informed me that

mappings satisfying (3.9) play a prominent role in the Lie algebra theory. The precise relation between

commuting maps and maps satisfying (3.9) is investigated in [4, Theorem 3.1].

Given a bounded linear map ϕ from a C∗-algebra A into a Banach A-bimodule X satisfying (3.4), it can

be verified (using the density of A and X in the second duals A♯♯ and X♯♯) that the map ϕ♯♯ : A♯♯ → X♯♯

also satisfies (3.4). Then by Theorem 3.3 ϕ must be of the form ϕ(a) = ca + ψ(a), where c ∈ ZX♯♯ and

ψ is a mapping from A into ZX♯♯ . However, this result is not completely satisfactory since its converse

is not true. Perhaps one would like to have c in the center of the multiplier bimodule of X (that is,

c ∈ M(X) := {x ∈ x♯♯ : xa, ax ∈ X ∀a ∈ A} and ca = ac for all a ∈ A), but this is not always possible

even in the case X = A as shown in [2, Example 6.2.9]. In the case X = A a more precise description of

mappings satisfying (3.4) was given by Ara and Mathieu in [1] (see also [2, Section 6.2]) and involves the

center of the local multiplier algebra of A. This suggests that one would need local multipliers of Banach

bimodules, but, as far as we know, such a theory has not been developed yet. However, if A is abelian, then

so is A♯♯, and by the proof of Theorem 3.3 in this case ϕ♯♯ has its range in ZX♯♯ , hence ϕ must have its

range in ZX♯♯ ∩X, which proves the following corollary.

Corollary 3.5. Every bounded linear commuting mapping ϕ from an abelian C∗-algebra A into a Banach

A-bimodule X has its range in the center of X.

Theorem 3.6. Let Rf and Ri denote the finite and the properly infinite part of a von Neumann algebra R.

Every weak* continuous linear functional ω on R⊗R which is invariant under all operators of the form

u ⊗ u, where u ∈ R is unitary (that is, ω((u ⊗ u)x(u ⊗ u)∗) = ω(x) for all x ∈ R⊗R and unitary u ∈ R)

annihilates Ri⊗R + R⊗Ri, while the restriction ω|(Rf ⊗Rf ) is of the form

ω(a⊗ b) = α(τf (a) ⊗ τf (b)) + β(τf (ab)) (a, b ∈ Rf ),

where τf is the central trace on Rf , β is in the predual (Zf )♯ of the center Zf of Rf and α ∈ (Zf ⊗Zf )♯.

Moreover, with sβ ∈ Zf the support projection of β, Rfsβ must be a direct sum of finite dimensional factors

the dimensions of which are bounded. The converse is also true.

Lemma 3.7. With the notation as in Theorem 3.6, let R⊗̂R be the operator space projective tensor product

and let θ be a bounded linear functional on R⊗̂R. Then θ((u ⊗ u)x(u ⊗ u)∗) = θ(x) for all x ∈ R⊗̂R and

all unitary u ∈ R if and only if θ annihilates Ri ⊗ R + R ⊗ Ri and the restriction θ|(Rf ⊗̂Rf ) is of the

form
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θ(a⊗ b) = α(τf (a) ⊗ τf (b)) + β(τf (ab)) (a, b ∈ Rf ),

where β is in the dual Z♯
f of Zf and α ∈ (Zf ⊗̂Zf )♯.

Proof. Under the natural isomorphism ι : CB(R,R♯) → (R⊗̂R)♯ (which is defined in the same way as (3.1),

that is, ι(ϕ)(r⊗s) = (ϕ(r))(s), where r, s ∈ R) functionals θ ∈ (R⊗̂R)♯, that are invariant under all u⊗u for

unitary u ∈ R, correspond to maps ϕ ∈ CB(R,R♯), that satisfy ϕ(uru∗) = uϕ(r)u∗ (r ∈ R), hence satisfy

(3.9). (This can be verified by considering u of the form eih, arguing similarly as in the beginning of this

section.) By Corollary 3.4 such a map ϕ annihilates Ri (hence θ(Ri ⊗ R) = 0 and similarly θ(R ⊗ Ri) = 0),

while its restriction to Rf is of the form ϕ(a) = ζa+ ρ ◦ τf (a), where ζ is in the center ZR♯ of R♯ and ρ is a

linear bounded (hence completely bounded since Zf is abelian) map from Zf into ZR♯ . Now ZR♯ consists

of all σ ∈ R♯ satisfying aσ = σa, that is σ(ba) = σ(ab) for all a, b ∈ R. Writing σ as σ = σ1 −σ2 + i(σ3 −σ4)

where all σj are positive (in a canonical way, so that σ1 and σ2 have orthogonal supports in R♯♯ and similarly

σ2 and σ3, see [15, p. 140]) it follows readily that all the σj are scalar multiples of tracial states. But there

are no such states on the properly infinite part Ri of R (since 1 can be written as a sum of two projections

both equivalent to 1), hence σ|Ri = 0. Thus it follows that ZR♯ consists of all tracial functionals on Rf ,

and it is a well-known consequence of the Dixmier approximation theorem that all such functionals are of

the form β ◦ τf , where β ∈ Z♯
f . Thus ZR♯ = Z♯

f ◦ τf = ZR♯
f

and ζ is of the form ζ(a) = β(τf (a)) (a ∈ Rf ),

where β ∈ Z♯
f . For the functional θ ∈ (R⊗̂R)♯ that corresponds to the map ϕ ∈ CB(R,R♯) under the

natural isomorphism (R⊗̂R)♯ ∼= CB(R,R♯) we now have

θ(a⊗ b) = ϕ(a)(b) = (ζa)(b) + (ρ(τf (a))))(b)

= ζ(ab) + (ρ(τf (a)))(b) = β(τf (ab)) + (ρ(τf (a)))(b)
(3.10)

for all a, b ∈ Rf , where ρ(τf (a)) ∈ ZR♯
f

= Z♯
f ◦ τf , hence ρ(τf (a)) = γ(a) ◦ τf , for a functional γ(a) ∈ Z♯

f .

Thus from (3.10)

γ(a)(τf (b)) = (ρ(τf (a)))(b) = θ(a⊗ b) − β(τf (ab)) (a, b ∈ Rf ). (3.11)

Since θ and β are completely bounded maps, it follows readily from (3.11) that γ : Rf → Z♯
f is a linear

completely bounded map. Further, for each unitary u ∈ Rf we have from (3.11) and the invariance of θ

that

γ(uau∗)(τf (b)) = γ(uau∗)(τf (ubu∗)) = θ((u⊗ u)(a⊗ b)(u⊗ u)∗ − β(τf (uabu∗))

= θ(a⊗ b) − β(τf (ab)) = γ(a)(τf (b)) (a, b ∈ Rf ),

which implies (since the range of τf is Zf ) that γ(uau∗) = γ(a). Since by the Dixmier approximation theorem

the norm closure of the convex hull of the set {uau∗ : u unitary in Rf } intersects Zf , and the only point

of the intersection is τf (a), it follows that γ(a) = α(τf (a)), where α := γ|Zf ∈ CB(Zf ,Z
♯
f ) ∼= (Zf ⊗̂Zf )♯.

From (3.11) we have now (regarding α as an element of (Zf ⊗̂Zf )♯)

θ(a⊗ b) = α(τf (a) ⊗ τf (b)) + β(τf (ab)) (a, b ∈ Rf ), (3.12)

which proves the lemma in one direction, while the reverse direction is trivial. 2

Proof of Theorem 3.6. Let ω ∈ (R⊗R)♯ be weak* continuous and invariant (as in the statement of Theo-

rem 3.6). Since the spatial tensor product R⊗R is weak* dense in R⊗R, ω is determined by the restriction

ω|(R ⊗ R). The natural complete contraction q : R⊗̂R → R ⊗ R has dense range, hence ω is determined by
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the composition θ := ω ◦ q, which has the appropriate form by Lemma 3.7, hence so will ω, if we can show

that β is weak* continuous and that α is bounded in the spatial norm of Zf ⊗ Zf and weak* continuous.

When a, b ∈ Zf , (3.12) (applied to ω ◦ q instead of θ) simplifies to

ω(a⊗ b) = α(a⊗ b) + β(ab) (a, b ∈ Zf ). (3.13)

Since Zf is abelian (hence of the form C(T ) for a compact space T ), the multiplication µ : Zf ⊗ Zf → Zf

is contractive (since µ corresponds to the restriction map C(T × T ) ∋ f 7→ (f |∆) ∈ C(T ), where ∆ is the

diagonal of T × T ). Hence β ◦ µ : Zf ⊗ Zf → C is bounded, and (3.13) implies that α is bounded in the

spacial norm, so we can extend α to α ∈ (Zf ⊗ Zf )♯. Then from (3.13) we have ω|(Zf ⊗ Zf ) = α + β ◦ µ,

hence taking the normal parts of maps (see [10, Chapter 10]), we get

ω|(Zf ⊗ Zf ) = αnor + (βµ)nor.

In particular β(z) = ω(z ⊗ 1) − αnor(z ⊗ 1) for all z ∈ Zf , which implies that β must be weak* continuous.

Replacing α with αnor and denoting its weak* continuous extension to Zf ⊗Zf simply by α again, we have

now, using (3.12), that ω(a⊗ b) = α(τf (a) ⊗ τf (b)) + β(τf (ab)) for all a, b ∈ Rf , however this identity can

not, in general, be extended to all elements of Rf ⊗ Rf since the map a⊗ b 7→ τf (ab) can not be extended

to a bounded map Rf ⊗ Rf → Zf as will be shown in the next paragraph.

If ei,j ∈ Rf (i, j = 1, . . . , n) are such that ei,jek,l = δj,kei,l, e
∗
i,j = ej,i and

∑n
i=1 ei,i = 1, then with

wn :=
∑n

i,j=1 ei,j ⊗ ej,i we have

(τf ◦ µ)(wn) = nτf (
n

∑

i=1

ei,i) = n,

while wn = w∗
n and w2

n = 1, hence ‖wn‖ = 1. Since for each n such an element w can be found in a type II1

factor, it follows that β must be 0 if Rf is a type II1 factor, otherwise βµ would not be bounded. Using the

direct integral decomposition one can generalize this to the case when Rf is not necessarily a facor, but still

of type II1. Alternatively, if Rf is injective and separable, then by [16, XVI, Corollary 1.43] Rf = R0⊗Zf ,

where R0 is the injective type II1 factor, and for a general type II1 algebra we can consider an injective

separable von Neumann subalgebra. If the support sβ of β is not orthogonal to the type II1 part R2 of Rf ,

then β|sβZR2
is a nonzero normal functional, hence given by a function 0 6= g ∈ L1(ν) where ν is a positive

finite measure on some space such that sβZR2

∼= L∞(ν). With h ∈ L∞(ν) defined as h(t) = g(t)/|g(t)| if

g(t) 6= 0, and h(t) = 0 if g(t) = 0, we have

βτfµ(h⊗ wn) = n

∫

|g(t)| dν(t)
n→∞
−→ ∞,

so βτfµ can not be extended to a bounded map on Rf ⊗ Rf in this case. Thus sβRf must be of finite

type I, that is, a direct sum of algebras of the form Mnk
(Zk), where Zk are abelian; moreover essentially

the same argument shows that supk nk < ∞. Then βτfµ is bounded, but still not weak* continuous if

the centers Zk are not atomic. To show this, identify Zk with L∞(ν) for a finite positive measure ν on a

set ∆. Then Zk⊗Zk
∼= L∞(ν × ν), β|Zk is given by a function g ∈ L1(ν) and the map βτfµ|(Zk⊗Zk) is

given by h 7→
∫

h(t, t)g(t) dν(t). If ν has no atoms, then by considering a sequence of suitable functions

hn the supports of which are concentrated nearer and nearer the diagonal of ∆ × ∆, we see that βτfµ can

not be weak* continuous. Thus, if βτfµ is weak* continuous, the non-atomic part of ν must be absent,

hence ν must be atomic. This proves the theorem in one direction. The reverse direction follows from the

weak* continuity of the central traces τf and τf ⊗τf and the weak* continuity of multiplication on atomic

abelian von Neumann algebras. (The multiplication ℓ∞⊗ℓ∞ → ℓ∞ is the second adjoint to the multiplication

c0 ⊗ c0 → c0, hence weak* continuous.) 2



ARTICLE IN PRESS

Please cite this article in press as: B. Magajna, Relative commutants of finite groups of unitary operators and commuting maps,
J. Math. Anal. Appl. (2021), https://doi.org/10.1016/j.jmaa.2021.125123

JID:YJMAA AID:125123 /FLA Doctopic: Functional Analysis [m3L; v1.303] P.10 (1-10)

10 B. Magajna / J. Math. Anal. Appl. ••• (••••) ••••••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

References

[1] P. Ara, M. Mathieu, An application of local multipliers to centralizing mappings on C*-algebras, Q. J. Math. Oxf. 44
(1993) 129–138.

[2] P. Ara, M. Mathieu, Local Multipliers of C∗-Algebras, Springer Monographs in Math., Springer-Verlag, Berlin, 2003.
[3] M. Brešar, Centralizing mappings on von Neumann algebras, Proc. Am. Math. Soc. 111 (1991) 501–510.
[4] M. Brešar, Functional identities and zero Lie product determined Banach algebras, Q. J. Math. 71 (2020) 649–665.
[5] M. Brešar, M.A. Chebotar, W.S. Martindale, Functional Identities, Birkha̋user Verlag, Basel, 2007.
[6] E.G. Effros, Z-J. Ruan, Operator Spaces, London Mathematical Society Monographs. New Series, vol. 23, Oxford University

Press, New York, 2000.
[7] T. Fack, P. de la Harpe, Sommes de commutateurs dans les algebres de von Neumann finies continues, Ann. Inst. Fourier

30 (1980) 49–73.
[8] H. Halpern, Commutators in properly infinite von Neumann algebras, Trans. Am. Math. Soc. 139 (1969) 55–73.
[9] M. Horodecki, P. Horodecki, Reduction criteria of separability and limits for a class of distillation protocols, Phys. Rev.

A 59 (1999) 4206.
[10] R.V. Kadison, J.R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol. 2, Academic Press, London, 1986.
[11] G. Pisier, Introduction to Operator Space Theory, London Mathematical Society Lecture Note Series, vol. 294, Cambridge

University Press, Cambridge, 2003.
[12] C. Pop, Finite sums of commutators, Proc. Am. Math. Soc. 130 (2002) 3039–3041.
[13] S. Popa, The relative Dixmier property for inclusions of von Neumann algebras of finite index, Ann. Sci. Éc. Norm. Supér.

32 (1999) 743–767.
[14] E. Størmer, Positive Linear Maps of Operator Algebras, Springer Monographs in Mathematics, Springer, Berlin, 2013.
[15] M. Takesaki, Theory of Operator Algebras, Vol. I, Encyclopaedia of Math. Sciences, vol. 124, Springer, Berlin, 2002.
[16] M. Takesaki, Theory of Operator Algebras, Vol. III, Encyclopaedia of Math. Sciences, vol. 127, Springer, Berlin, 2003.
[17] R.F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden variable model, Phys. Rev.

A 40 (1989) 4277–4281.



ARTICLE IN PRESS

Please cite this article in press as: B. Magajna, Relative commutants of finite groups of unitary operators and commuting maps,
J. Math. Anal. Appl. (2021), https://doi.org/10.1016/j.jmaa.2021.125123

JID:YJMAA AID:125123 /FLA Doctopic: Functional Analysis [m3L; v1.303] P.11 (1-10)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Sponsor names

Do not correct this page. Please mark corrections to sponsor names and grant numbers in the main text.

Slovenian Research Agency, country=Slovenia, grants=P1-0288


	Relative commutants of finite groups of unitary operators and commuting maps
	1 Introduction
	2 The relative commutant of the flip and of a finite unitary group
	3 Commuting mappings
	References


