J. Math. Anal. Appl. ••• (••••) •••••

Contents lists available at ScienceDirect

g

© 2021 Published by Elsevier Inc.

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

For a von Neumann algebra \mathcal{R} we determine the commutant of the set $\{u \otimes u :$

 $u \in \mathcal{R}, u$ unitary and normal functionals on $\mathcal{R} \otimes \mathcal{R}$ that are invariant under all

automorphisms implemented by $u \otimes u$ for u unitary in \mathcal{R} . For a finite group G

of unitary operators on a Hilbert space \mathcal{H} implementing automorphisms of a von

Neumann algebra $\mathcal{S} \subseteq B(\mathcal{H})$ we describe the relative commutant of \mathcal{S} in the von

Relative commutants of finite groups of unitary operators and commuting maps a,aa

ABSTRACT

Bojan Magajna

Department of Mathematics, University of Ljubljana, Jadranska 21, Ljubljana 1000, Slovenia

ARTICLE INFO Article history: Received 18 January 2021 Available online xxxx

Submitted by M. Mathieu Keywords:

W^{*}-algebra

Commuting map Invariant state

1. Introduction

In quantum information theory it turned out to be interesting to know all operators on $B(\mathcal{H})\overline{\otimes}B(\mathcal{H})$, where \mathcal{H} is a Hilbert space, that commute with all operators of the form $u \otimes u$ for $u \in B(\mathcal{H})$ unitary. Specifically, if \mathcal{H} is finite dimensional, it was proved that only such operators are linear combinations of the identity 1 and the flip $V \in B(\mathcal{H}) \otimes B(\mathcal{H})$, where $V \in B(\mathcal{H} \otimes \mathcal{H}) = B(\mathcal{H}) \otimes B(\mathcal{H})$ is determined by $V(\xi \otimes \eta) = \eta \otimes \xi$ ($\xi, \eta \in \mathcal{H}$) (see [17], [9], [14, Section 7.5]). Since $V^2 = 1 = V^*$, the set $W^*(V) := \mathbb{C}1 + \mathbb{C}V$ is a von Neumann algebra and by the von Neumann bicommutant theorem this result is equivalent to the statement that the commutant of $W^*(V)$ is, as a von Neumann algebra, generated by operators of the form $u \otimes u$, where u is in the unitary group of B(\mathcal{H}). In the next section we give a short proof of this result, valid also in the case when \mathcal{H} is infinite dimensional, in fact we consider the case where $B(\mathcal{H})$ is replaced by any von Neumann algebra \mathcal{R} . Then we generalize this to the case when the flip automorphism of $\mathcal{R} \overline{\otimes} \mathcal{R}$ is replaced by a finite group of automorphisms of a von Neumann algebra. In the special case, when \mathcal{H} is finite-dimensional, $B(\mathcal{H})\overline{\otimes}B(\mathcal{H})$ can be identified with the space $L(B(\mathcal{H}))$ of all linear maps on $B(\mathcal{H})$ and it turns out that the above mentioned commutation result can be easily deduced also from a theorem of Brešar [3] concerning commuting mappings. In fact, in Section 3 we will consider a more general situation of

Neumann algebra generated by S and G.

0022-247X/© 2021 Published by Elsevier Inc.

Acknowledgment. I am grateful to Matej Brešar and to the anonymous referee for bringing some of the references to my attention.

^{**} The author acknowledges the financial support from the Slovenian Research Agency (research core funding no. P1-0288). E-mail address: Bojan.Magajna@fmf.uni-lj.si.

https://doi.org/10.1016/j.jmaa.2021.125123

		ARTICLE IN PRESS	
JID:YJMAA	AID:125123 /FLA	Doctopic: Functional Analysis	[m3L; v1.303] P.2 (1-10)
2		B. Magajna / J. Math. Anal. Appl. ••• (••••) •••••	

commuting maps from a von Neumann algebra \mathcal{R} into an \mathcal{R} -bimodule. As an application we determine all bounded linear functionals on the operator space projective tensor product $\mathcal{R}\hat{\otimes}\mathcal{R}$ that are invariant under all maps of the form $x \mapsto (u \otimes u)^x (u \otimes u)^*$, where $u \in \mathcal{R}$ is unitary, and also all normal such functionals on the von Neumann algebra $\mathcal{R} \otimes \mathcal{R}$.

2. The relative commutant of the flip and of a finite unitary group

Let $V \in B(\mathcal{H} \otimes \mathcal{H})$ be the flip, that is $V(\xi \otimes \eta) = \eta \otimes \xi$ $(\xi, \eta \in \mathcal{H})$, let \mathcal{F} be the automorphism of $B(\mathcal{H}) \otimes B(\mathcal{H}) = B(\mathcal{H} \otimes \mathcal{H})$ defined by $\mathcal{F}(x) = VxV$ and $\mathcal{F}_{\mathcal{R}}$ its restriction to $\mathcal{R} \otimes \mathcal{R}$, where $\mathcal{R} \subseteq B(\mathcal{H})$ is a von Neumann algebra. Denote $\mathcal{S} = (\mathcal{R} \otimes \mathcal{R})'$ so that

$$\mathcal{S}' = \mathcal{R} \overline{\otimes} \mathcal{R},$$

and let $\mathcal{A}_{\mathcal{R}}$ be the von Neumann subalgebra of \mathcal{S}' consisting of all fixed points of $\mathcal{F}_{\mathcal{R}}$. Since $\mathcal{F}_{\mathcal{R}}(a \otimes b) = b \otimes a$ for all $a, b \in \mathcal{R}$, $\mathcal{A}_{\mathcal{R}}$ contains the weak^{*} closure of the set of all finite sums of the form $\sum_{i} (a_i \otimes b_i + b_i \otimes a_i)$ $(a_i, b_i \in \mathcal{R})$. Conversely, if $w \in \mathcal{S}'$ is fixed by $\mathcal{F}_{\mathcal{R}}$, then $w = \frac{1}{2}(w + \mathcal{F}_{\mathcal{R}}(w))$, hence, approximating w by finite sums of the form $\sum_{i} a_i \otimes b_i$ $(a_i, b_i \in \mathcal{R})$, we deduce the following simple lemma.

Lemma 2.1. The fixed point algebra $\mathcal{A}_{\mathcal{R}}$ of $\mathcal{F}_{\mathcal{R}}$ is equal to the weak* closure of the set of all finite sums of the form $\sum_{i} (a_i \otimes b_i + b_i \otimes a_i)$, where $a_i, b_i \in \mathcal{R}$.

Denote by \mathcal{R}_u the unitary group of \mathcal{R} and set

$$\mathcal{U}_{\mathcal{R}} := \{ u \otimes u : \ u \in \mathcal{R}_u \}.$$

Lemma 2.2. $\mathcal{A}'_{\mathcal{R}} = \mathcal{U}'_{\mathcal{R}}$, hence $\mathcal{A}_{\mathcal{R}}$ is generated by $\mathcal{U}_{\mathcal{R}}$ as a von Neumann algebra.

Proof. By Lemma 2.1 $\mathcal{U}_{\mathcal{R}} \subseteq \mathcal{A}_{\mathcal{R}}$, hence $\mathcal{A}'_{\mathcal{R}} \subseteq \mathcal{U}'_{\mathcal{R}}$, so we need to prove only that each $x \in \mathcal{U}'_{\mathcal{R}}$ is also in $\mathcal{A}'_{\mathcal{B}}$. But x commutes in particular with all elements of the form $e^{ith} \otimes e^{ith}$, where $h \in \mathcal{R}$ is hermitian and $t \in \mathbb{R}$. Using the Taylor expansion $e^{ith} = 1 + ith - \frac{1}{2}t^2h^2 + \dots$ we see by comparing the linear terms in the identity

$$x(e^{ith} \otimes e^{ith}) = (e^{ith} \otimes e^{ith})x$$

that

$$x(1 \otimes h + h \otimes 1) = (1 \otimes h + h \otimes 1)x.$$

Then x must commute also with all elements in the von Neumann algebra generated by all elements of the form $1 \otimes h + h \otimes 1$, where $h \in \mathcal{R}$ is hermitian, and by Lemma 2.1 this von Neumann algebra is easily seen to be just $\mathcal{A}_{\mathcal{R}}$. \Box

Observe that by the definitions of $\mathcal{F}_{\mathcal{R}}$ and $\mathcal{A}_{\mathcal{R}}$ we have that $\mathcal{A}_{\mathcal{R}}$ is just the relative commutant of V in \mathcal{S}' , that is $\mathcal{A}_{\mathcal{R}} = (V)' \cap \mathcal{S}'$, hence by Lemma 2.2

$$\mathcal{U}_{\mathcal{R}}' = ((V)' \cap \mathcal{S}')' = (V)'' \vee \mathcal{S} \ (= \text{the von Neumann algebra generated by } (V)'' \cup \mathcal{S}).$$
(2.1)

By the Tomita commutation theorem ([10], [15]) we have $\mathcal{S} = (\mathcal{R} \otimes \mathcal{R})' = \mathcal{R}' \otimes \mathcal{R}'$. Further, since $V = V^*$ and $V^2 = 1$, the space $\mathbb{C}1 + \mathbb{C}V$ is a von Neumann algebra and so $(V)'' = \mathbb{C}1 + \mathbb{C}V$. Since VSV = S, it

ARTICLE IN PRESS

JID:YJMAA AID:125123 /FLA Doctopic: Functional Analysis

 B. Magajna / J. Math. Anal. Appl. ••• (••••) •••••

Corollary 2.3. $\{u \otimes u : u \text{ unitary in } \mathcal{R}\}' = S1 + SV$, where $S = \mathcal{R}' \overline{\otimes} \mathcal{R}'$ and V is the flip on $B(\mathcal{H}) \overline{\otimes} B(\mathcal{H})$ (that is, $V(\xi \otimes \eta = \eta \otimes \xi, \xi, \eta \in \mathcal{H})$.

Let us now consider a more general situation, where $\mathcal{R} \otimes \mathcal{R}$ is replaced by a von Neumann algebra \mathcal{S} acting on a Hilbert space \mathcal{H} and the flip V is replaced by a finite group G of unitary operators on \mathcal{H} such that $u \mathcal{S} u^* = \mathcal{S}$ for all $u \in G$.

Theorem 2.4. If G is finite, the subspace SG of $B(\mathcal{H})$ is a von Neumann algebra.

Proof. Let \mathcal{A} be the implemented crossed product of \mathcal{S} by G (as defined in [10, 13.1.3]). Thus, if n is the cardinality of G and the Hilbert space $\mathcal{H} \otimes \ell^2(G)$ is identified naturally with \mathcal{H}^n (and consequently $B(\mathcal{H} \otimes \ell^2(G))$ with $M_n(B(\mathcal{H})))$, \mathcal{A} consists of all operator matrices of the form $[gh^{-1}s(gh^{-1})]$, where s: $G \to \mathcal{S}$ is any function. (Thus the entry on the position (g,h) is $gh^{-1}s(gh^{-1})$, where $g,h \in G$.) The map

$$\pi: \mathcal{A} \to \mathcal{B}(\mathcal{H}), \ \pi([gh^{-1}s(gh^{-1})]) = \sum_{t \in G} ts(t)$$

is easily verified to be a *-homomorphism, mapping \mathcal{A} onto GS. Further, evidently π is weak* continuous, hence GS is a von Neumann algebra. \square

The commutant of GS is $G' \cap S'$, which is just the fixed point algebra of G in S', that is $(GS)' = \{x \in S' : gxg^{-1} = x \forall g \in G\}$, and coincides also with the range of the projection $x \mapsto \frac{1}{|G|} \sum_{g \in G} gxg^{-1} \ (x \in S')$. To determine concretely the relative commutant of S in GS, we first recall a known decomposition of an automorphism of a von Neumann algebra.

Proposition 2.5. [10, 12.4.17, 12.4.18] Let $S \subseteq B(\mathcal{H})$ be a von Neumann algebra and $v \in B(\mathcal{H})$ a unitary such that $vSv^* = S$. Then there exists a unique central projection $p \in S$, commuting with v, such that the automorphism $x \mapsto vxv^*$ restricted to Sp is inner, say implemented by a unitary $u \in Sp$, hence vp = uu'for a unitary $u' \in S'p$, while the action of v on Sp^{\perp} is free in the sense that $sv \in S'p^{\perp}$ ($s \in S$) implies that $sp^{\perp} = 0$.

Now we can describe the relative commutant of S in GS.

Theorem 2.6. Let $S \subseteq B(\mathcal{H})$ be a von Neumann algebra, \mathcal{Z} the center of S and G a finite group of unitary operators on \mathcal{H} such that $gSg^* = S$ for all $g \in G$. For each $g \in G$ let p_g be the largest projection in \mathcal{Z} such that the automorphism $x \mapsto gxg^*$ on S is inner, so that

$$gp_q = u_q u'_q \tag{2.2}$$

for some unitaries $u_g \in p_g S$ and $u'_g \in p_g S'$ (see Proposition 2.5). Then to be a set of the transformation of transformation of the transformation of transformation o

$$G\mathcal{S} \cap \mathcal{S}' = \{ \sum_{g \in G} c_g u'_g : c_g \in \mathcal{Z} \}.$$
⁴⁷
⁴⁸

Please cite this article in press as: B. Magajna, Relative commutants of finite groups of unitary operators and commuting maps, J. Math. Anal. Appl. (2021), https://doi.org/10.1016/j.jmaa.2021.125123

JID:YJMAA AID:125123 /FLA Doctopic: Functional Analysis B. Magajna / J. Math. Anal. Appl. ••• (••••) •••••

(

Proof. Since $\mathcal{Z} \subseteq \mathcal{S}'$ and from (2.2) we have $c_g u'_g = u'_g c_g = g p_g u^*_g c_g \in G\mathcal{S}$, it follows that each element of the form $\sum_{g \in G} c_g u'_g$ (where $c_g \in \mathcal{Z}$) is contained in $G \mathcal{S} \cap \mathcal{S}'$. To prove the reverse inclusion, let $y \in G \mathcal{S} \cap \mathcal{S}'$. As in Theorem 2.4, let $\mathcal{A} \subseteq M_n(\mathcal{B}(\mathcal{H}))$ be the implemented crossed product of \mathcal{S} by G and let $\pi: \mathcal{A} \to G\mathcal{S}$ be the natural *-epimorphism. Since there is a faithful (normal) conditional expectation from \mathcal{A} onto \mathcal{S} of finite index (namely, the map $E: [gh^{-1}s(gh^{-1})] \mapsto s(e)$, which can be easily verified to satisfy the finite index condition $Ex \ge cx \ \forall x \mathcal{A}_+$ for some constant c > 0, since n is finite), the inclusion $\mathcal{S} \subseteq \mathcal{A}$ has the relative Dixmier property by [13]. This means that for each $x \in \mathcal{A}$ the closure of the convex hull of the set of all elements of the form uxu^* , where $u \in \mathcal{S}$ is unitary, intersects the commutant of \mathcal{S} in \mathcal{A} , hence also the commutant of S in $M_n(B(\mathcal{H}))$, which is $M_n(S')$. Choosing $x \in \mathcal{A}$ so that $\pi(x) = y$, it follows that there exists $t \in \mathcal{A} \cap M_n(\mathcal{S}')$ such that $\pi(t) = y$. Since $t \in \mathcal{A}$, t is of the form $t = [gh^{-1}s(gh^{-1})]$ for a function $s: G \to \mathcal{S}$. Since $t \in M_n(\mathcal{S}')$, we have that $gh^{-1}s(gh^{-1}) \in \mathcal{S}'$ for all $g, h \in G$, which means just that $gs(g) \in \mathcal{S}'$ for all $g \in G$. With p_g , u_g and u'_g as in the statement of the theorem, we have by Proposition 2.5 that $p_q^{\perp}s(g) = 0$, hence

$$qs(g) = gp_g s(g) = u'_g u_g s(g).$$
 15

Since $gs(g) \in \mathcal{S}'$, it follows that $u'_q u_g s(g) \in \mathcal{S}'$, hence $u_g s(g) \in u'_q \mathcal{S}' \subseteq \mathcal{S}'$. But, since $u_g s(g) \in \mathcal{S}$, this implies that the element $c_g := u_g s(g)$ is in \mathcal{Z} . Then $p_g s(g) = p_g u_g^* c_g = u_g^* c_g$. Finally, we compute that

$$y = \pi(t) = \sum_{g \in G} gs(g) = \sum_{g \in G} gp_g s(g) = \sum_{g \in G} u'_g u_g s(g)$$

$$=\sum_{g\in G}u_g'u_gp_gs(g)=\sum_{g\in G}u_g'u_gu_g^*c_g=\sum_{g\in G}u_g'p_gc_g=\sum_{g\in G}c_gu_g'.\quad \Box$$

3. Commuting mappings

The tensor product $\mathcal{R} \otimes \mathcal{R}$ is dual to the operator space projective tensor product $\mathcal{R}_{\sharp} \otimes \mathcal{R}_{\sharp}$, where \mathcal{R}_{\sharp} is the predual of \mathcal{R} ([6, p. 136], [11, p. 49]), and is therefore completely isometrically isomorphic to the space $CB(\mathcal{R}_{\sharp},\mathcal{R})$ of all completely bounded maps from \mathcal{R}_{\sharp} to \mathcal{R} , by the map

$$\iota: CB(\mathcal{R}_{\sharp}, \mathcal{R}) \to (\mathcal{R}_{\sharp} \hat{\otimes} \mathcal{R}_{\sharp})^{\sharp} = \mathcal{R} \overline{\otimes} \mathcal{R}, \quad \iota(\varphi)(\omega \otimes \rho) = (\varphi(\omega))(\rho) \quad (\forall \omega, \rho \in \mathcal{R}_{\sharp}).$$
(3.1)

Under this isomorphism, the condition that an element of $w \in \mathcal{R} \otimes \mathcal{R}$ commutes with all elements of the form $u \otimes u$, where $u \in \mathcal{R}$ is unitary, translates into the condition that the corresponding map $\varphi = \iota^{-1}(w)$ satisfies

 $\varphi(u^* \omega u) = u^* \varphi(\omega) u \quad (\forall \omega \in \mathcal{R}_{\texttt{H}}, \ \forall u \in \mathcal{R} \text{ unitary}).$

Putting in this identity $u = e^{ith} = 1 + ith + \dots$, where $h = h^* \in \mathcal{R}$ and $t \in \mathbb{R}$, and comparing the linear terms on both sides, it follows that

$$\varphi([\omega, a]) = [\varphi(\omega), a] \quad (\forall \omega \in \mathcal{R}_{\sharp}, \forall a \in \mathcal{R}),$$
(3.2)

where $[\omega, a]$ denotes the commutator $\omega a - a\omega$. If \mathcal{R} is finite dimensional, then \mathcal{R}_{\sharp} can be identified with \mathcal{R} and the condition (3.2) simply means that $[\varphi(a), b] = \varphi([a, b])$ for all $a, b \in \mathcal{R}$. In particular

$$[\varphi(a), a] = 0 \quad (\forall a \in \mathcal{R}), \tag{3.3}$$

that is, $\varphi(a)$ commutes with a. Note that replacing in (3.3) a with a + b we get that

Please cite this article in press as: B. Magajna, Relative commutants of finite groups of unitary operators and commuting maps, J. Math. Anal. Appl. (2021), https://doi.org/10.1016/j.jmaa.2021.125123

g

B. Magajna / J. Math. Anal. Appl. ••• (••••) •••••

 $[\varphi(a), b] = [a, \varphi(b)] \quad (\forall a, b \in \mathcal{R}).$ (3.4)

Proposition 3.1. Let \mathcal{R} be a unital ring such that the ideal generated by all commutators [a, b] $(a, b \in \mathbb{R})$ is equal to \mathcal{R} and let \mathcal{X} be an \mathcal{R} -bimodule. Let

 $\mathcal{Z}_{\mathcal{X}} := \{ x \in \mathcal{X} : ax = xa \ \forall a \in \mathcal{R} \}$

be the center of \mathcal{X} . Then each additive mapping $\varphi: \mathcal{R} \to \mathcal{X}$ satisfying (3.3) is of the form

 $\varphi(a) = ca + \psi(a).$ (3.5)

where $c \in \mathcal{Z}_{\mathcal{X}} \cap \mathcal{RXR}$ and ψ is an additive map from \mathcal{R} to $\mathcal{Z}_{\mathcal{X}}$.

We note that Proposition 3.1 applies in particular to unital C^{*}-algebras which have no tracial states since in such C^* -algebras each element is a finite sum of commutators by [12].

In the special case $\mathcal{X} = \mathcal{R}$ it is obvious from (3.4) that φ maps the center of a ring \mathcal{R} into itself. The following example shows that this does not hold any more for mappings into general \mathcal{R} -bimodules.

Example 3.2. Let \mathcal{R} be the subalgebra of $M_3(\mathbb{C})$ (3 × 3 complex matrices) consisting of all matrices of the form

 $\begin{bmatrix} x & y & z \\ 0 & x & 0 \\ 0 & 0 & x \end{bmatrix}.$

Define a map $\varphi : \mathcal{R} \to M_3(\mathbb{C})$ by

 $\varphi\left(\begin{bmatrix}x & y & z\\0 & x & 0\\0 & 0 & x\end{bmatrix}\right) = \begin{bmatrix}y & 0 & 0\\0 & y & z\\0 & 0 & 0\end{bmatrix}.$

 $\left(\begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \right)$

It can be verified that \mathcal{R} is abelian, that φ satisfies the condition (3.3), but nevertheless

$$\begin{array}{cccc} 37 & & & \varphi \left(\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right) & \text{does not commute with} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} . & & & & 38 \\ 39 & & & & & 39 \end{array}$$

A normal dual bimodule over a von Neumann algebra \mathcal{R} is a dual Banach space Y such that the module operations $Y \ni y \mapsto ay, ya \in Y$ and $\mathcal{R} \ni a \mapsto ay, ya \in Y$ are weak* continuous (only the weak* continuity of the last two operations will be needed in the proof of the next theorem). In the special case $\mathcal{X} = \mathcal{R}$ the following theorem was proved by Brešar [3]; commuting of maps on C*-algebras were studied by Ara and Mathieu [1], [2].

Theorem 3.3. Let \mathcal{X} be a subbimodule of a normal dual bimodule over a von Neumann algebra \mathcal{R} . Every bounded linear map $\varphi : \mathcal{R} \to \mathcal{X}$, satisfying (3.3), is of the form (3.5), where $\mathcal{Z}_{\mathcal{X}}$ is defined as in Proposi-tion 3.1, $c \in \mathcal{Z}_{\mathcal{X}}$ and ψ is a (bounded linear) map from \mathcal{R} into $\mathcal{Z}_{\mathcal{X}}$.

	ARTICLE IN PRESS			
	JID:YJMAA AID:125123 /FLA Doctopic: Functional Analysis [m3L; v1.303] P.6 (1-10)			
	6 B. Magajna / J. Math. Anal. Appl. ••• (••••) •••••			
1	Proof. If \mathcal{R} has no abelian central summands, then the theorem is a special case of Proposition 3.1.	1		
2	Suppose now that \mathcal{R} is abelian. If \mathcal{R} is generated by one element a_0 (which is the case if \mathcal{R} acts on 2			
3	a separable Hilbert space by [15, p. 112]), then it follows from (3.3) (and the weak* continuity of the	3		
4	multiplications $r \mapsto rx, xr$ that $\varphi(a_0)$ commutes with all elements of \mathcal{R} , that is $\varphi(a_0) \in \mathcal{Z}_{\mathcal{X}}$. By (3.4) we	4		
5	have $[\varphi(a), a_0] = [a, \varphi(a_0)] = 0$ $\forall a \in \mathcal{R}$. Since \mathcal{R} is generated by a_0 , this implies that $\varphi(a)$ commutes with	5		
0 7	all elements of \mathcal{K} , that is, $\varphi(a) \in \mathcal{Z}_{\mathcal{X}}$. For a general abelian \mathcal{K} , a von Neumann subalgebra $\mathcal{K}_{a,b}$ generated	0		
7 8	by any two elements a, b is singly generated (it is generated by a countable family of commuting projections,	, 8		
9	There is a regulated of \mathcal{R} we see that $\lfloor a(a), b \rfloor = 0$. Since this holds for all $b \in \mathcal{R}$, this means that $\lfloor a(a) \in \mathcal{I}_{2}$. This	9		
10	$\mathcal{K}_{a,b}$ instead of \mathcal{K} , we see that $[\varphi(a), b] = 0$. Since this holds for an $b \in \mathcal{K}$, this means that $\varphi(a) \in \mathcal{I}_{\mathcal{K}}$. This proves that $(\rho(\mathcal{R}) \subset \mathcal{I}_{\mathcal{K}})$ if \mathcal{R} is abelian	10		
11	In general, let p be the central projection in \mathcal{R} such that $p\mathcal{R}$ is abelian and $p^{\perp}\mathcal{R}$ has no non-zero abelian	11		
12	central summands. Then $p\mathcal{R}$ is contained in the center \mathcal{Z} of \mathcal{R} . We claim that $\varphi(\mathcal{Z}) \subseteq \mathcal{Z}_{\mathcal{X}}$. To prove this, let	12		
13	$h = h^* \in \mathcal{R}$. Applying what we have proved in the previous paragraph to the abelian von Neumann algebra	13		
14	$W^*(\mathcal{Z},h)$ generated by $\mathcal{Z} \cup \{h\}$ and to \mathcal{X} as an $W^*(\mathcal{Z},h)$ -bimodule, we conclude that $[\varphi(z),h] = 0$ for all	14		
15	$z \in \mathcal{Z}$. Thus $[\varphi(z), h + ik] = 0$ for all self-adjoint $h, k \in \mathcal{R}$, meaning that $\varphi(z) \in \mathcal{Z}_{\mathcal{X}}$, that is, $\varphi(\mathcal{Z}) \subseteq \mathcal{Z}_{\mathcal{X}}$.	15		
16	Further, any element z in the center of $p^{\perp}\mathcal{R}$ is also in the center \mathcal{Z} of \mathcal{R} , hence $\varphi(z) \in \mathcal{Z}_{\mathcal{X}}$. Since $p^{\perp}\mathcal{R}$ has	16		
17	no non-zero abelian central summands, by Proposition 3.1 there exists	17		
18		18		
19	$c \in p^{\perp} \mathcal{X} p^{\perp}$ satisfying $cp^{\perp} a = p^{\perp} a c \forall a \in \mathcal{R},$ (3.6)	19		
20 21	such that the mapping	20		
22	such that the mapping	22		
23	$\psi: \mathcal{R} ightarrow \mathcal{X}, \;\; \psi(a) = arphi(a) - ca$	23		
24		24		
25	satisfies	25		
26		26		
27	$[\psi(p^{\perp}a), p^{\perp}b] = 0 \forall a, b \in \mathcal{R}. $ (3.7)	27		
28	Then $a \in \mathcal{F}_{n}$ since $[a, a] = [n^{\perp} cn^{\perp}, a] = [n^{\perp} cn^{\perp}, n^{\perp} an^{\perp}] = 0$ for all $a \in \mathcal{P}$ by (3.6) Further, since $na \in \mathcal{F}_{n}$	28		
29	Then $c \in \mathcal{I}_{\mathcal{X}}$ since $[c, a] = [p \ cp \ , a] = [p \ cp \ , p \ ap \] = 0$ for an $a \in \mathcal{K}$ by (5.0). Further, since $pa \in \mathcal{I}$ and therefore $\omega(na) \in \mathcal{I}_{\mathcal{X}}$ by what we have already proved, we have	29		
30 31	and encicies $\varphi(p_{\alpha}) \in \mathcal{Z}_{\mathcal{X}}$ by what we have already proved, we have	31		
32	$[\psi(pa), b] = [\varphi(pa), b] - [cpa, b] = [\varphi(pa), b] = 0 \forall b \in \mathcal{R}.$ (3.8)	32		
33		33		
34	Finally, from (3.8), (3.7), (3.4) and the facts $c \in \mathcal{Z}_{\mathcal{X}}$, $p\mathcal{R} \subseteq \mathcal{Z}$ (hence $\varphi(p\mathcal{R}) \subseteq \mathcal{Z}_{\mathcal{X}}$) we conclude that	34		
35		35		
36	$[\psi(a), b] = [\psi(p^{\perp}a), b] = [\psi(p^{\perp}a), pb] = [\varphi(p^{\perp}a), pb] - [cp^{\perp}a, pb]$	36		
37	$= [\varphi(p^{\perp}a), pb] = [p^{\perp}a, \varphi(pb)] = 0.$	37		
38		38		
39 40	Thus $\psi(\mathcal{R}) \subseteq \mathcal{Z}_{\mathcal{X}}$. \Box	39		
40	Concllence 2.4. Energy beam ded linear man (2. D.) V satisfying	40		
42	Coronary 3.4. Every bounded linear map $\varphi : \mathcal{K} \to \mathcal{K}$ satisfying	42		
43	$\varphi([a, b]) = [\varphi(a), b] \forall a, b \in \mathcal{R}. $ (3.9)	43		
44	$r([m, -1]) = [r(m), 0] + m, 0 \in \mathbb{N}$	44		
45	is of the form (3.5), where $c \in \mathcal{Z}_{\mathcal{X}}$ and $\psi : \mathcal{R} \to \mathcal{Z}_{\mathcal{X}}$ annihilates all commutators $[a, b]$ $(a, b \in \mathcal{R})$. Thus	45		
46	ψ annihilates the properly infinite part of \mathcal{R} , while the restriction of ψ to the finite part \mathcal{R}_f of \mathcal{R} is of the	46		
47	form $\psi \mathcal{R}_f = \rho \circ \tau$, where τ is the central trace on \mathcal{R}_f and ρ is a mapping from the center \mathcal{Z}_f of \mathcal{R}_f into	47		
48	$\mathcal{Z}_{\mathcal{X}}$.	48		

Please cite this article in press as: B. Magajna, Relative commutants of finite groups of unitary operators and commuting maps, J. Math. Anal. Appl. (2021), https://doi.org/10.1016/j.jmaa.2021.125123

B. Magajna / J. Math. Anal. Appl. ••• (••••) •••••

Proof. By Theorem 3.3 φ is of the form (3.5) and, since $\psi(\mathcal{R}) \subseteq \mathcal{Z}_{\mathcal{X}}$, it follows from (3.9) that

$$\psi([a,b]) = [\psi(a),b] = 0 \quad \forall a,b \in \mathcal{R}.$$

Since each element in a properly infinite von Neumann algebra is a sum of two commutators by [8], ψ annihilates the properly infinite part of \mathcal{R} . On the other hand the restriction of ψ to the finite part \mathcal{R}_f of \mathcal{R} factors as $\psi|\mathcal{R}_f = \tilde{\psi}\eta$, where $\eta: \mathcal{R}_f \to \mathcal{R}_f/[\mathcal{R}_f, \mathcal{R}_f]$ is the quotient map and $\tilde{\psi}: \mathcal{R}_f/[\mathcal{R}_f, \mathcal{R}_f] \to \mathcal{Z}_{\mathcal{X}}$ is the map induced by $\psi[\mathcal{R}_f]$; here $[\mathcal{R}_f, \mathcal{R}_f]$ denotes the (closed) subspace generated by the commutators in \mathcal{R}_f . By [7] each element with the central trace 0 in a finite von Neumann algebra is a sum of finitely many commutators, hence the central trace τ on \mathcal{R}_f maps $\mathcal{R}_f/[\mathcal{R}_f, \mathcal{R}_f]$ isomorphically onto the center \mathcal{Z}_f of \mathcal{R}_f , so that by the open mapping theorem the inverse map $\sigma: \mathcal{Z}_f \to \mathcal{R}_f/[\mathcal{R}_f, \mathcal{R}_f]$ is bounded. Finally observe that $\psi | \mathcal{R}_f = (\tilde{\psi}\sigma)\tau$ and set $\rho = \tilde{\psi}\sigma$. \Box

After the first version of this paper had already been sent to publication M. Brešar informed me that mappings satisfying (3.9) play a prominent role in the Lie algebra theory. The precise relation between commuting maps and maps satisfying (3.9) is investigated in [4, Theorem 3.1].

Given a bounded linear map φ from a C*-algebra A into a Banach A-bimodule X satisfying (3.4), it can be verified (using the density of A and X in the second duals $A^{\sharp\sharp}$ and $X^{\sharp\sharp}$) that the map $\varphi^{\sharp\sharp}: A^{\sharp\sharp} \to X^{\sharp\sharp}$ also satisfies (3.4). Then by Theorem 3.3 φ must be of the form $\varphi(a) = ca + \psi(a)$, where $c \in \mathbb{Z}_{X^{\sharp\sharp}}$ and ψ is a mapping from A into $\mathcal{Z}_{X^{\sharp\sharp}}$. However, this result is not completely satisfactory since its converse is not true. Perhaps one would like to have c in the center of the multiplier bimodule of X (that is, $c \in M(X) := \{x \in x^{\sharp\sharp} : xa, ax \in X \forall a \in A\}$ and ca = ac for all $a \in A$, but this is not always possible even in the case X = A as shown in [2, Example 6.2.9]. In the case X = A a more precise description of mappings satisfying (3.4) was given by Ara and Mathieu in [1] (see also [2, Section 6.2]) and involves the center of the local multiplier algebra of A. This suggests that one would need local multipliers of Banach bimodules, but, as far as we know, such a theory has not been developed yet. However, if A is abelian, then so is $A^{\sharp\sharp}$, and by the proof of Theorem 3.3 in this case $\varphi^{\sharp\sharp}$ has its range in $\mathcal{Z}_{X^{\sharp\sharp}}$, hence φ must have its range in $\mathcal{Z}_{X^{\sharp\sharp}} \cap X$, which proves the following corollary.

Corollary 3.5. Every bounded linear commuting mapping φ from an abelian C^{*}-algebra A into a Banach A-bimodule X has its range in the center of X.

Theorem 3.6. Let \mathcal{R}_f and \mathcal{R}_i denote the finite and the properly infinite part of a von Neumann algebra \mathcal{R} . Every weak* continuous linear functional ω on $\mathcal{R} \overline{\otimes} \mathcal{R}$ which is invariant under all operators of the form $u \otimes u$, where $u \in \mathcal{R}$ is unitary (that is, $\omega((u \otimes u)x(u \otimes u)^*) = \omega(x)$ for all $x \in \mathcal{R} \otimes \mathcal{R}$ and unitary $u \in \mathcal{R}$) annihilates $\mathcal{R}_i \overline{\otimes} \mathcal{R} + \mathcal{R} \overline{\otimes} \mathcal{R}_i$, while the restriction $\omega | (\mathcal{R}_f \overline{\otimes} \mathcal{R}_f)$ is of the form

$$\omega(a \otimes b) = \alpha(\tau_f(a) \otimes \tau_f(b)) + \beta(\tau_f(ab)) \quad (a, b \in \mathcal{R}_f),$$

where τ_f is the central trace on \mathcal{R}_f , β is in the predual $(\mathcal{Z}_f)_{\sharp}$ of the center \mathcal{Z}_f of \mathcal{R}_f and $\alpha \in (\mathcal{Z}_f \otimes \mathcal{Z}_f)_{\sharp}$. Moreover, with $s_{\beta} \in \mathcal{Z}_f$ the support projection of β , $\mathcal{R}_f s_{\beta}$ must be a direct sum of finite dimensional factors the dimensions of which are bounded. The converse is also true.

Lemma 3.7. With the notation as in Theorem 3.6, let $\mathcal{R} \otimes \mathcal{R}$ be the operator space projective tensor product and let θ be a bounded linear functional on $\mathcal{R}\hat{\otimes}\mathcal{R}$. Then $\theta((u \otimes u)x(u \otimes u)^*) = \theta(x)$ for all $x \in \mathcal{R}\hat{\otimes}\mathcal{R}$ and all unitary $u \in \mathcal{R}$ if and only if θ annihilates $\mathcal{R}_i \otimes \mathcal{R} + \mathcal{R} \otimes \mathcal{R}_i$ and the restriction $\theta|(\mathcal{R}_f \otimes \mathcal{R}_f)$ is of the form

Please cite this article in press as: B. Magajna, Relative commutants of finite groups of unitary operators and commuting maps, J. Math. Anal. Appl. (2021), https://doi.org/10.1016/j.jmaa.2021.125123

JID:YJMAA AID:125123 /FLA Doctopic: Functional Analysis

B. Magajna / J. Math. Anal. Appl. ••• (••••) •••••

$$\theta(a \otimes b) = \alpha(\tau_f(a) \otimes \tau_f(b)) + \beta(\tau_f(ab)) \quad (a, b \in \mathcal{R}_f),$$

where β is in the dual \mathcal{Z}_f^{\sharp} of \mathcal{Z}_f and $\alpha \in (\mathcal{Z}_f \hat{\otimes} \mathcal{Z}_f)^{\sharp}$.

Proof. Under the natural isomorphism $\iota: CB(\mathcal{R}, \mathcal{R}^{\sharp}) \to (\mathcal{R} \otimes \mathcal{R})^{\sharp}$ (which is defined in the same way as (3.1), that is, $\iota(\varphi)(r \otimes s) = (\varphi(r))(s)$, where $r, s \in \mathcal{R}$ functionals $\theta \in (\mathcal{R} \otimes \mathcal{R})^{\sharp}$, that are invariant under all $u \otimes u$ for unitary $u \in \mathcal{R}$, correspond to maps $\varphi \in CB(\mathcal{R}, \mathcal{R}^{\sharp})$, that satisfy $\varphi(uru^*) = u\varphi(r)u^*$ $(r \in \mathcal{R})$, hence satisfy (3.9). (This can be verified by considering u of the form e^{ih} , arguing similarly as in the beginning of this section.) By Corollary 3.4 such a map φ annihilates \mathcal{R}_i (hence $\theta(\mathcal{R}_i \otimes \mathcal{R}) = 0$ and similarly $\theta(\mathcal{R} \otimes \mathcal{R}_i) = 0$), q while its restriction to \mathcal{R}_f is of the form $\varphi(a) = \zeta a + \rho \circ \tau_f(a)$, where ζ is in the center $\mathcal{Z}_{\mathcal{R}^{\sharp}}$ of \mathcal{R}^{\sharp} and ρ is a linear bounded (hence completely bounded since \mathcal{Z}_f is abelian) map from \mathcal{Z}_f into $\mathcal{Z}_{\mathcal{R}^{\sharp}}$. Now $\mathcal{Z}_{\mathcal{R}^{\sharp}}$ consists of all $\sigma \in \mathcal{R}^{\sharp}$ satisfying $a\sigma = \sigma a$, that is $\sigma(ba) = \sigma(ab)$ for all $a, b \in \mathcal{R}$. Writing σ as $\sigma = \sigma_1 - \sigma_2 + i(\sigma_3 - \sigma_4)$ where all σ_i are positive (in a canonical way, so that σ_1 and σ_2 have orthogonal supports in $\mathcal{R}^{\sharp\sharp}$ and similarly σ_2 and σ_3 , see [15, p. 140]) it follows readily that all the σ_i are scalar multiples of tracial states. But there are no such states on the properly infinite part \mathcal{R}_i of \mathcal{R} (since 1 can be written as a sum of two projections both equivalent to 1), hence $\sigma | \mathcal{R}_i = 0$. Thus it follows that $\mathcal{Z}_{\mathcal{R}^{\sharp}}$ consists of all tracial functionals on \mathcal{R}_f , and it is a well-known consequence of the Dixmier approximation theorem that all such functionals are of the form $\beta \circ \tau_f$, where $\beta \in \mathcal{Z}_f^{\sharp}$. Thus $\mathcal{Z}_{\mathcal{R}^{\sharp}} = \mathcal{Z}_f^{\sharp} \circ \tau_f = \mathcal{Z}_{\mathcal{R}_f^{\sharp}}$ and ζ is of the form $\zeta(a) = \beta(\tau_f(a))$ $(a \in \mathcal{R}_f)$, where $\beta \in \mathcal{Z}_{f}^{\sharp}$. For the functional $\theta \in (\mathcal{R} \otimes \mathcal{R})^{\sharp}$ that corresponds to the map $\varphi \in CB(\mathcal{R}, \mathcal{R}^{\sharp})$ under the natural isomorphism $(\mathcal{R} \otimes \mathcal{R})^{\sharp} \cong CB(\mathcal{R}, \mathcal{R}^{\sharp})$ we now have

$$\theta(a \otimes b) = \varphi(a)(b) = (\zeta a)(b) + (\rho(\tau_f(a)))(b)$$
(2.10)

$$= \zeta(ab) + (\rho(\tau_f(a)))(b) = \beta(\tau_f(ab)) + (\rho(\tau_f(a)))(b)$$
(5.10)

for all $a, b \in \mathcal{R}_f$, where $\rho(\tau_f(a)) \in \mathcal{Z}_{\mathcal{R}_f^{\sharp}} = \mathcal{Z}_f^{\sharp} \circ \tau_f$, hence $\rho(\tau_f(a)) = \gamma(a) \circ \tau_f$, for a functional $\gamma(a) \in \mathcal{Z}_f^{\sharp}$. Thus from (3.10)

$$\gamma(a)(\tau_f(b)) = (\rho(\tau_f(a)))(b) = \theta(a \otimes b) - \beta(\tau_f(ab)) \quad (a, b \in \mathcal{R}_f).$$
(3.11)

Since θ and β are completely bounded maps, it follows readily from (3.11) that $\gamma : \mathcal{R}_f \to \mathcal{Z}_f^{\sharp}$ is a linear completely bounded map. Further, for each unitary $u \in \mathcal{R}_f$ we have from (3.11) and the invariance of θ that

$$\gamma(uau^*)(\tau_f(b)) = \gamma(uau^*)(\tau_f(ubu^*)) = \theta((u \otimes u)(a \otimes b)(u \otimes u)^* - \beta(\tau_f(uabu^*))$$

$$=\theta(a\otimes b)-\beta(\tau_f(ab))=\gamma(a)(\tau_f(b))\ \ (a,b\in\mathcal{R}_f),$$

which implies (since the range of τ_f is \mathcal{Z}_f) that $\gamma(uau^*) = \gamma(a)$. Since by the Dixmier approximation theorem the norm closure of the convex hull of the set $\{uau^*: u \text{ unitary in } \mathcal{R}_f\}$ intersects \mathcal{Z}_f , and the only point of the intersection is $\tau_f(a)$, it follows that $\gamma(a) = \alpha(\tau_f(a))$, where $\alpha := \gamma | \mathcal{Z}_f \in \operatorname{CB}(\mathcal{Z}_f, \mathcal{Z}_f^{\sharp}) \cong (\mathcal{Z}_f \hat{\otimes} \mathcal{Z}_f)^{\sharp}$. From (3.11) we have now (regarding α as an element of $(\mathcal{Z}_f \otimes \mathcal{Z}_f)^{\sharp}$)

$$\theta(a \otimes b) = \alpha(\tau_f(a) \otimes \tau_f(b)) + \beta(\tau_f(ab)) \quad (a, b \in \mathcal{R}_f),$$
(3.12)

which proves the lemma in one direction, while the reverse direction is trivial. \Box

Proof of Theorem 3.6. Let $\omega \in (\mathcal{R} \otimes \mathcal{R})^{\sharp}$ be weak* continuous and invariant (as in the statement of Theo-rem 3.6). Since the spatial tensor product $\mathcal{R} \otimes \mathcal{R}$ is weak^{*} dense in $\mathcal{R} \otimes \mathcal{R}$, ω is determined by the restriction $\omega | (\mathcal{R} \otimes \mathcal{R})$. The natural complete contraction $q : \mathcal{R} \otimes \mathcal{R} \to \mathcal{R} \otimes \mathcal{R}$ has dense range, hence ω is determined by

Please cite this article in press as: B. Magajna, Relative commutants of finite groups of unitary operators and commuting maps, J. Math. Anal. Appl. (2021), https://doi.org/10.1016/j.jmaa.2021.125123

[m3L; v1.303] P.8 (1-10)

B. Magajna / J. Math. Anal. Appl. ••• (••••) •••••

the composition θ := ω ∘ q, which has the appropriate form by Lemma 3.7, hence so will ω, if we can show
 that β is weak* continuous and that α is bounded in the spatial norm of Z_f ⊗ Z_f and weak* continuous.
 When a, b ∈ Z_f, (3.12) (applied to ω ∘ q instead of θ) simplifies to

$$\omega(a \otimes b) = \alpha(a \otimes b) + \beta(ab) \quad (a, b \in \mathcal{Z}_f).$$
(3.13)

Since \mathcal{Z}_f is abelian (hence of the form C(T) for a compact space T), the multiplication $\mu : \mathcal{Z}_f \otimes \mathcal{Z}_f \to \mathcal{Z}_f$ is contractive (since μ corresponds to the restriction map $C(T \times T) \ni f \mapsto (f|\Delta) \in C(T)$, where Δ is the diagonal of $T \times T$). Hence $\beta \circ \mu : \mathcal{Z}_f \otimes \mathcal{Z}_f \to \mathbb{C}$ is bounded, and (3.13) implies that α is bounded in the spacial norm, so we can extend α to $\alpha \in (\mathcal{Z}_f \otimes \mathcal{Z}_f)^{\sharp}$. Then from (3.13) we have $\omega|(\mathcal{Z}_f \otimes \mathcal{Z}_f) = \alpha + \beta \circ \mu$, hence taking the normal parts of maps (see [10, Chapter 10]), we get

ω

$$\psi(\mathcal{Z}_f\otimes\mathcal{Z}_f)=lpha_{
m nor}+(eta\mu)_{
m nor}.$$

¹⁴ In particular $\beta(z) = \omega(z \otimes 1) - \alpha_{nor}(z \otimes 1)$ for all $z \in \mathcal{Z}_f$, which implies that β must be weak* continuous. ¹⁴ ¹⁵ Replacing α with α_{nor} and denoting its weak* continuous extension to $\mathcal{Z}_f \otimes \mathcal{Z}_f$ simply by α again, we have ¹⁵ ¹⁶ now, using (3.12), that $\omega(a \otimes b) = \alpha(\tau_f(a) \otimes \tau_f(b)) + \beta(\tau_f(ab))$ for all $a, b \in \mathcal{R}_f$, however this identity can ¹⁶ ¹⁷ not, in general, be extended to all elements of $\mathcal{R}_f \otimes \mathcal{R}_f$ since the map $a \otimes b \mapsto \tau_f(ab)$ can not be extended ¹⁷ ¹⁸ to a bounded map $\mathcal{R}_f \otimes \mathcal{R}_f \to \mathcal{Z}_f$ as will be shown in the next paragraph. ¹⁸

¹⁹ If $e_{i,j} \in \mathcal{R}_f$ (i, j = 1, ..., n) are such that $e_{i,j}e_{k,l} = \delta_{j,k}e_{i,l}$, $e_{i,j}^* = e_{j,i}$ and $\sum_{i=1}^n e_{i,i} = 1$, then with ²⁰ $w_n := \sum_{i,j=1}^n e_{i,j} \otimes e_{j,i}$ we have

 $(\tau_f \circ \mu)(w_n) = n\tau_f(\sum_{i=1}^n e_{i,i}) = n,$ 22
23
24

while $w_n = w_n^*$ and $w_n^2 = 1$, hence $||w_n|| = 1$. Since for each n such an element w can be found in a type II₁ factor, it follows that β must be 0 if \mathcal{R}_f is a type II₁ factor, otherwise $\beta\mu$ would not be bounded. Using the direct integral decomposition one can generalize this to the case when \mathcal{R}_f is not necessarily a facor, but still of type II₁. Alternatively, if \mathcal{R}_f is injective and separable, then by [16, XVI, Corollary 1.43] $\mathcal{R}_f = \mathcal{R}_0 \overline{\otimes} \mathcal{Z}_f$, where \mathcal{R}_0 is the injective type II₁ factor, and for a general type II₁ algebra we can consider an injective separable von Neumann subalgebra. If the support s_{β} of β is not orthogonal to the type II₁ part \mathcal{R}_2 of \mathcal{R}_f , then $\beta | s_{\beta} Z_{\mathcal{R}_2}$ is a nonzero normal functional, hence given by a function $0 \neq g \in L^1(\nu)$ where ν is a positive finite measure on some space such that $s_{\beta} \mathcal{Z}_{\mathcal{R}_2} \cong L^{\infty}(\nu)$. With $h \in L^{\infty}(\nu)$ defined as $h(t) = \overline{g(t)}/|g(t)|$ if $g(t) \neq 0$, and h(t) = 0 if g(t) = 0, we have

 $\beta \tau_f \mu(h \otimes w_n) = n \int |g(t)| \, d\nu(t) \xrightarrow{n \to \infty} \infty,$ 35
36
36

so $\beta \tau_f \mu$ can not be extended to a bounded map on $\mathcal{R}_f \otimes \mathcal{R}_f$ in this case. Thus $s_\beta \mathcal{R}_f$ must be of finite type I, that is, a direct sum of algebras of the form $M_{n_k}(\mathcal{Z}_k)$, where \mathcal{Z}_k are abelian; moreover essentially the same argument shows that $\sup_k n_k < \infty$. Then $\beta \tau_f \mu$ is bounded, but still not weak* continuous if the centers \mathcal{Z}_k are not atomic. To show this, identify \mathcal{Z}_k with $L^{\infty}(\nu)$ for a finite positive measure ν on a set Δ . Then $\mathcal{Z}_k \otimes \mathcal{Z}_k \cong L^{\infty}(\nu \times \nu)$, $\beta | \mathcal{Z}_k$ is given by a function $g \in L^1(\nu)$ and the map $\beta \tau_f \mu | (\mathcal{Z}_k \otimes \mathcal{Z}_k)$ is given by $h \mapsto \int h(t,t)g(t) d\nu(t)$. If ν has no atoms, then by considering a sequence of suitable functions h_n the supports of which are concentrated nearer and nearer the diagonal of $\Delta \times \Delta$, we see that $\beta \tau_f \mu$ can not be weak^{*} continuous. Thus, if $\beta \tau_f \mu$ is weak^{*} continuous, the non-atomic part of ν must be absent, hence ν must be atomic. This proves the theorem in one direction. The reverse direction follows from the weak^{*} continuity of the central traces τ_f and $\tau_f \otimes \overline{\tau}_f$ and the weak^{*} continuity of multiplication on atomic abelian von Neumann algebras. (The multiplication $\ell^{\infty} \overline{\otimes} \ell^{\infty} \to \ell^{\infty}$ is the second adjoint to the multiplication $c_0 \otimes c_0 \to c_0$, hence weak* continuous.) \square

Please cite this article in press as: B. Magajna, Relative commutants of finite groups of unitary operators and commuting maps, J. Math. Anal. Appl. (2021), https://doi.org/10.1016/j.jmaa.2021.125123

ARTICLE IN PRESS

JID:YJMAA AID:125123 /FLA Doctopic: Functional Analysis

B. Magajna / J. Math. Anal. Appl. ••• (••••) •••••

References

- [1] P. Ara, M. Mathieu, An application of local multipliers to centralizing mappings on C*-algebras, Q. J. Math. Oxf. 44 (1993) 129–138. [2] P. Ara, M. Mathieu, Local Multipliers of C*-Algebras, Springer Monographs in Math., Springer-Verlag, Berlin, 2003. [3] M. Brešar, Centralizing mappings on von Neumann algebras, Proc. Am. Math. Soc. 111 (1991) 501–510. [4] M. Brešar, Functional identities and zero Lie product determined Banach algebras, Q. J. Math. 71 (2020) 649–665. [5] M. Brešar, M.A. Chebotar, W.S. Martindale, Functional Identities, Birkhäuser Verlag, Basel, 2007. [6] E.G. Effros, Z-J. Ruan, Operator Spaces, London Mathematical Society Monographs. New Series, vol. 23, Oxford University Press, New York, 2000. [7] T. Fack, P. de la Harpe, Sommes de commutateurs dans les algebres de von Neumann finies continues, Ann. Inst. Fourier q g 30 (1980) 49-73. H. Halpern, Commutators in properly infinite von Neumann algebras, Trans. Am. Math. Soc. 139 (1969) 55-73. [9] M. Horodecki, P. Horodecki, Reduction criteria of separability and limits for a class of distillation protocols, Phys. Rev. A 59 (1999) 4206. [10] R.V. Kadison, J.R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol. 2, Academic Press, London, 1986. [11] G. Pisier, Introduction to Operator Space Theory, London Mathematical Society Lecture Note Series, vol. 294, Cambridge University Press, Cambridge, 2003. [12] C. Pop, Finite sums of commutators, Proc. Am. Math. Soc. 130 (2002) 3039–3041. [13] S. Popa, The relative Dixmier property for inclusions of von Neumann algebras of finite index, Ann. Sci. Éc. Norm. Supér. 32 (1999) 743-767. [14] E. Størmer, Positive Linear Maps of Operator Algebras, Springer Monographs in Mathematics, Springer, Berlin, 2013. [15] M. Takesaki, Theory of Operator Algebras, Vol. I, Encyclopaedia of Math. Sciences, vol. 124, Springer, Berlin, 2002. [16] M. Takesaki, Theory of Operator Algebras, Vol. III, Encyclopaedia of Math. Sciences, vol. 127, Springer, Berlin, 2003. [17] R.F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden variable model, Phys. Rev. A 40 (1989) 4277-4281.

Please cite this article in press as: B. Magajna, Relative commutants of finite groups of unitary operators and commuting maps, J. Math. Anal. Appl. (2021), https://doi.org/10.1016/j.jmaa.2021.125123

	ARTICLE IN PRESS	[m2] · u1 202] D 11 (1 10)	
	JID:YJMAA AID:125123 / FLA Doctopic: Functional Analysis	[m3L; v1.303] P.11 (1-10)	
1	Sponsor names		1
2	De not come t this new Place work come time to an and much come in the original	- 44	2
3	Do not correct this page. Flease mark corrections to sponsor names and grant numbers in the main	i text.	3
4	Slovenian Research Agency, country=Slovenia, grants=P1-0288		4
5			5
6			6
7			7
8			8
9			9
10			10
11			11
12			12
13			13
14			14
15			15
16			16
17			17
18			18
19			19
20 21			20
21			21
23			23
24			24
25			25
26			26
27			27
28			28
29			29
30			30
31			31
32			32
33			33
34			34
35			35
36			36
37			37
38			38