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1. Introduction

In quantum information theory it turned out to be interesting to know all operators on B(H)®B(H),
where H is a Hilbert space, that commute with all operators of the form u ® u for v € B(H) unitary.
Specifically, if H is finite dimensional, it was proved that only such operators are linear combinations of
the identity 1 and the flip V € B(H)®B(H), where V € B(H ® H) = B(H)®B(H) is determined by
V(Ean) =n®E& (&,neH) (see [17], [9], [14, Section 7.5]). Since VZ =1 = V*, the set W*(V) :=C1+CV
is a von Neumann algebra and by the von Neumann bicommutant theorem this result is equivalent to the
statement that the commutant of W*(V) is, as a von Neumann algebra, generated by operators of the form
u ® u, where u is in the unitary group of B(#). In the next section we give a short proof of this result,
valid also in the case when H is infinite dimensional, in fact we consider the case where B(H) is replaced
by any von Neumann algebra R. Then we generalize this to the case when the flip automorphism of RR
is replaced by a finite group of automorphisms of a von Neumann algebra. In the special case, when H is
finite-dimensional, B(*)®B(H) can be identified with the space L(B(#)) of all linear maps on B(H) and
it turns out that the above mentioned commutation result can be easily deduced also from a theorem of
Bresar [3] concerning commuting mappings. In fact, in Section 3 we will consider a more general situation of
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commuting maps from a von Neumann algebra R into an R-bimodule. As an application we determine all
bounded linear functionals on the operator space projective tensor product R®R that are invariant under
all maps of the form z — (v ® u)z(u ® u)*, where u € R is unitary, and also all normal such functionals on
the von Neumann algebra ROR.

2. The relative commutant of the flip and of a finite unitary group

Let V € B(H ® H) be the flip, that is V(E®n) = n® & (&,n € H), let F be the automorphism of
B(H)®B(H) = B(H ® H) defined by F(z) = VaV and Fg its restriction to R®R, where R C B(H) is a
von Neumann algebra. Denote S = (R®R)’ so that

S’ = R&R,

and let A be the von Neumann subalgebra of S’ consisting of all fixed points of Fg. Since Fr(a®b) = b®a
for all a,b € R, Ar contains the weak™* closure of the set of all finite sums of the form ), (a; ® b; + b; ® a;)
(a;,b; € R). Conversely, if w € &’ is fixed by Fr, then w = §(w + Fgr(w)), hence, approximating w by
finite sums of the form )", a; ® b; (a;,b; € R), we deduce the following simple lemma.

Lemma 2.1. The fized point algebra Ar of Fr is equal to the weak™® closure of the set of all finite sums of
the form Y. (a; ® b; + b; ® a;), where a;,b; € R.

Denote by R, the unitary group of R and set
Ur ={u®u: ueR,}
Lemma 2.2. A%, = U, hence Ag is generated by Ur as a von Neumann algebra.

Proof. By Lemma 2.1 Ur C Ag, hence A% C U, so we need to prove only that each z € Uy, is also in
Al,. But  commutes in particular with all elements of the form e'h @ e*h where h € R is hermitian and
t € R. Using the Taylor expansion e/" =1+ ith — 3t?h? 4+ ... we see by comparing the linear terms in the
identity

x(eith ® eith) — (eith ® eith)l,
that
r1@h+h®1)=(1h+h®1)z.

Then z must commute also with all elements in the von Neumann algebra generated by all elements of the
form 1 ® h+ h ® 1, where h € R is hermitian, and by Lemma 2.1 this von Neumann algebra is easily seen
to be just Ax. O

Observe that by the definitions of Fr and Agx we have that Ag is just the relative commutant of V' in
§’, that is Agx = (V)' NS’ hence by Lemma 2.2

Ur = (V) NS = (V)" VS (= the von Neumann algebra generated by (V)" US). (2.1)

By the Tomita commutation theorem ([10], [15]) we have § = (R®R) = R'®R’. Further, since V = V*
and V2 = 1, the space C1 + CV is a von Neumann algebra and so (V)" = C1 + CV. Since VSV = S, it
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follows easily that the space S + SV is a self-adjoint subalgebra of B(H)®B(H), containing V and S. It
follows from a more general result below (Theorem 2.4) that S + SV is weak™ closed, hence S + SV D Uj,
by (2.1). Since V' and all elements of S commute with all © ® u, we also have that S + SV C Uy, so this
proves the following corollary, which in the special case of finite-dimensional situation was proved (by a
different method) in [14, p. 105-108] and [17], [9].

Corollary 2.3. {u ® u : w unitary in R} = S1+ SV, where S = R'QR’ and V is the flip on B(H)@B(H)
(that is, V(E@n=n®E, §,n € H).

Let us now consider a more general situation, where R®R is replaced by a von Neumann algebra S
acting on a Hilbert space H and the flip V' is replaced by a finite group G of unitary operators on H such
that uSu* =S for all u € G.

Theorem 2.4. If G is finite, the subspace SG of B(H) is a von Neumann algebra.

Proof. Let A be the implemented crossed product of S by G (as defined in [10, 13.1.3]). Thus, if n is
the cardinality of G’ and the Hilbert space H ® ¢?(G) is identified naturally with H™ (and consequently
B(H ® (*(Q)) with M,,(B(#))), A consists of all operator matrices of the form [gh~1ts(gh™1)], where s :
G — 8 is any function. (Thus the entry on the position (g, k) is gh~1s(gh™!), where g,h € G.) The map

m: A—B(H), 7([ghts(gh™)]) = Zts(t)

teG

is easily verified to be a *-homomorphism, mapping A onto GS. Further, evidently 7 is weak™ continuous,
hence GS is a von Neumann algebra. O

The commutant of GS is G’ NS’ which is just the fixed point algebra of G in &', that is (GS)' = {z €
S grg~!
To determine concretely the relative commutant of S in GS, we first recall a known decomposition of an

=z Vg € G}, and coincides also with the range of the projection x — ﬁ deG grg~t (x € 8.
automorphism of a von Neumann algebra.

Proposition 2.5. [10, 12.4.17, 12.4.18] Let S C B(H) be a von Neumann algebra and v € B(H) a unitary
such that vSv* = §. Then there exists a unique central projection p € S, commuting with v, such that the
automorphism x — vav* restricted to Sp is inner, say implemented by a unitary u € Sp, hence vp = uu’
for a unitary u' € S'p, while the action of v on Sp* is free in the sense that sv € S'p* (s € S) implies that
spt =0.

Now we can describe the relative commutant of S in GS.

Theorem 2.6. Let S C B(H) be a von Neumann algebra, Z the center of S and G a finite group of unitary
operators on H such that gSg* = S for all g € G. For each g € G let py be the largest projection in Z such
that the automorphism x — gxg* on S is inner, so that

gpg = ugy, (2.2)
or some unitaries u, € p,S and u!, € p,S’ (see Proposition 2.5). Then
g &Py g &Pg
GSNS =) cquy: cy€ Z}.

geG
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Proof. Since Z C &’ and from (2.2) we have cyu; = ujc, = gpgujcy € GS, it follows that each element of
the form »° . cguy (where ¢, € Z) is contained in GSNS'. To prove the reverse inclusion, let y € GSNS'.
As in Theorem 2.4, let A C M,,(B(#)) be the implemented crossed product of S by G and let 7 : A — GS
be the natural *-epimorphism. Since there is a faithful (normal) conditional expectation from 4 onto S of
finite index (namely, the map E : [gh™'s(gh™1)] = s(e), which can be easily verified to satisfy the finite
index condition Ez > cx Vz.A4 for some constant ¢ > 0, since n is finite), the inclusion S C A has the
relative Dixmier property by [13]. This means that for each = € A the closure of the convex hull of the set
of all elements of the form uxu*, where u € S is unitary, intersects the commutant of S in A, hence also
the commutant of S in M,,(B(#)), which is M,,(S’). Choosing = € A so that m(x) = y, it follows that there
exists t € AN M,(S’) such that 7(t) = y. Since t € A, t is of the form ¢t = [gh~'s(gh™!] for a function
s: G — 8. Since t € M,(8’), we have that gh~'s(gh™!) € &' for all g,h € G, which means just that
gs(g) € 8’ for all g € G. With pg, uy and uy as in the statement of the theorem, we have by Proposition 2.5
that p;s(g) = 0, hence
95(9) = gpgs(g) = ugugs(g).

Since gs(g) € &', it follows that ujugs(g) € S', hence ugs(g) € uy'S’ € S'. But, since uys(g) € S, this
implies that the element ¢, := u,s(g) is in Z. Then pys(g) = pyujcy = ujcy. Finally, we compute that

y=m(t)=>_ gs(g) =Y gpes(g) = Y _ uyugs(g)
geG geG geG
=D uyugpys(g) = D ujuguge = D upecg =Y _ couy. D
geG geG geqG geG

3. Commuting mappings

The tensor product RR is dual to the operator space projective tensor product Ru@Rﬁ, where Ry is
the predual of R ([6, p. 136], [L1, p. 49]), and is therefore completely isometrically isomorphic to the space
CB(Rg,R) of all completely bounded maps from Ry to R, by the map

1: CB(Ry,R) = (Ry&Ry)F = RER, 1(0)(w @ p) = (p())(p) (Veo,p € Ry). (3.1)

Under this isomorphism, the condition that an element of w € R®R commutes with all elements of the
form u ® u, where u € R is unitary, translates into the condition that the corresponding map ¢ = ¢~ (w)
satisfies

p(uwu) = up(w)u (Yw € Ry, Yu € R unitary).

Putting in this identity u = e®" = 1 +ith + ..., where h = h* € R and t € R, and comparing the linear
terms on both sides, it follows that

o([w,a]) = [p(w),a] (Vw e Ry,Ya € R), (3.2)

where [w, a] denotes the commutator wa — aw. If R is finite dimensional, then Ry can be identified with R
and the condition (3.2) simply means that [¢(a),b] = ¢([a,b]) for all a,b € R. In particular

[p(a),a] =0 (Va € R), (3-3)

that is, ¢(a) commutes with a. Note that replacing in (3.3) @ with a + b we get that
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[p(a),b] = [a,0(b)] (Ya,beR). (3-4)

Additive mappings satisfying (3.3) on rings were characterized by Bresar [3] and called commuting mappings
(see also [5, Example 1.5]). In fact, his proof in [3, Lemma 2.2, Corollary 2.3, 1. line on p. 504] works also
for mappings from a ring R into any R-bimodule and shows the following proposition.

Proposition 3.1. Let R be a unital ring such that the ideal generated by all commutators [a,b] (a,b € R) is
equal to R and let X be an R-bimodule. Let

Zy:={r e X:axr=1zaVaeR}
be the center of X. Then each additive mapping ¢ : R — X satisfying (3.3) is of the form
p(a) = ca+1(a), (3.5)
where ¢ € Zxy N RAR and v is an additive map from R to Zx.

We note that Proposition 3.1 applies in particular to unital C*-algebras which have no tracial states since
in such C*-algebras each element is a finite sum of commutators by [12].

In the special case X = R it is obvious from (3.4) that ¢ maps the center of a ring R into itself. The
following example shows that this does not hold any more for mappings into general R-bimodules.

Example 3.2. Let R be the subalgebra of M3(C) (3 x 3 complex matrices) consisting of all matrices of the

form
x oy z
0 =z O
0 0 =z
Define a map ¢ : R — M3(C) by
T Yy z y 0 O
P 0 =z O =10 y =z
0 0 =z 0 00

It can be verified that R is abelian, that ¢ satisfies the condition (3.3), but nevertheless

0 0 1 0 10
[0 0 0 O does not commute with |0 0 0
00 0 0 0 O

A normal dual bimodule over a von Neumann algebra R is a dual Banach space Y such that the module
operations Y 3 y — ay,ya € Y and R 3 a — ay,ya € Y are weak™ continuous (only the weak* continuity
of the last two operations will be needed in the proof of the next theorem). In the special case X = R the
following theorem was proved by BreSar [3]; commuting of maps on C*-algebras were studied by Ara and
Mathieu [1], [2].

Theorem 3.3. Let X be a subbimodule of a normal dual bimodule over a von Neumann algebra R. Every
bounded linear map ¢ : R — X, satisfying (3.3), is of the form (3.5), where Zx is defined as in Proposi-
tion 3.1, ¢ € Zx and ¢ is a (bounded linear) map from R into Zx.
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Proof. If R has no abelian central summands, then the theorem is a special case of Proposition 3.1.

Suppose now that R is abelian. If R is generated by one element ay (which is the case if R acts on
a separable Hilbert space by [15, p. 112]), then it follows from (3.3) (and the weak* continuity of the
multiplications r — 7z, zr) that ¢(ag) commutes with all elements of R, that is ¢(ag) € Zx. By (3.4) we
have [p(a), ag] = [a,¢(ap)] =0 Va € R. Since R is generated by ao, this implies that ¢(a) commutes with
all elements of R, that is, ¢(a) € Zx. For a general abelian R, a von Neumann subalgebra R, ; generated
by any two elements a, b is singly generated (it is generated by a countable family of commuting projections,
hence an argument from [15, p. 112] shows that it is singly generated). If we apply the above argument to
Rap instead of R, we see that [¢(a),b] = 0. Since this holds for all b € R, this means that ¢(a) € Zx. This
proves that ¢(R) C Zy if R is abelian.

In general, let p be the central projection in R such that pR is abelian and pR has no non-zero abelian
central summands. Then pR is contained in the center Z of R. We claim that ¢(Z) C Zy. To prove this, let
h = h* € R. Applying what we have proved in the previous paragraph to the abelian von Neumann algebra
W*(Z,h) generated by Z U {h} and to X as an W*(Z, h)-bimodule, we conclude that [¢(z),h] = 0 for all
z € Z. Thus [¢(2),h + ik] = 0 for all self-adjoint h, k € R, meaning that ¢(z) € Zy, that is, ¢(Z) C Zx.
Further, any element z in the center of p~R is also in the center Z of R, hence ¢(z) € Zx. Since p* R has
no non-zero abelian central summands, by Proposition 3.1 there exists

ce ptXpt satisfying ¢pta =ptac YaeR, (3.6)
such that the mapping
v:R =X, ¥(a)=p(a)—ca
satisfies
[W(pta),ptb =0 Va,beR. (3.7)

Then ¢ € Zy since [c,a] = [ptept,a] = [prept,ptapt] = 0 for all @ € R by (3.6). Further, since pa € Z
and therefore p(pa) € Zx by what we have already proved, we have

[¢(pa),b] = [p(pa),b] — [cpa,b] = [p(pa),b] =0 Vbe R. (3.8)

Finally, from (3.8), (3.7), (3.4) and the facts ¢ € Zy, pR C Z (hence p(pR) C Zx) we conclude that

[¥(a),b] = [¥(p*a), b] = [ (p™a), pb] = [w(p™a), pb] — [cp™a, pb]
= [o(p™a), pb] = [p~a, ¢(pb)] = 0.
Thus ¥(R) C Zx. O
Corollary 3.4. Every bounded linear map ¢ : R — X satisfying
o([a,b]) = [p(a),b] Ya,beR (3.9)

is of the form (3.5), where ¢ € Zx and ¢ : R — Zx annihilates all commutators [a,b] (a,b € R). Thus
Y annihilates the properly infinite part of R, while the restriction of v to the finite part Ry of R is of the

orm Y|Ry = po T, where T is the central trace on Ry and p is a mapping from the center Z¢ of Ry into
F=p f P f f
Zx.
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Proof. By Theorem 3.3 ¢ is of the form (3.5) and, since ¥(R) C Zy, it follows from (3.9) that

¥([a,b]) = [¢p(a),b] =0 Va,be R.

Since each element in a properly infinite von Neumann algebra is a sum of two commutators by [8], ¥
annihilates the properly infinite part of R. On the other hand the restriction of 9 to the finite part Ry of
R factors as ¢|Rs = ¢n, where : Ry — Ry/[Rys, R¢] is the quotient map and v : Rs/[Ry, Rf] — Zx is
the map induced by ¥|Ry; here [Ry, Ry] denotes the (closed) subspace generated by the commutators in
Ry. By [7] each element with the central trace 0 in a finite von Neumann algebra is a sum of finitely many
commutators, hence the central trace 7 on Ry maps R¢/[R, R¢] isomorphically onto the center Zy of Ry,
so that by the open mapping theorem the inverse map o : Zy — Ry/[Ry, Ry] is bounded. Finally observe
that |Rs = (o) and set p = ho. O

After the first version of this paper had already been sent to publication M. BresSar informed me that
mappings satisfying (3.9) play a prominent role in the Lie algebra theory. The precise relation between
commuting maps and maps satisfying (3.9) is investigated in [4, Theorem 3.1].

Given a bounded linear map ¢ from a C*-algebra A into a Banach A-bimodule X satisfying (3.4), it can
be verified (using the density of A and X in the second duals A* and X*) that the map ¢# : A% — XF
also satisfies (3.4). Then by Theorem 3.3 ¢ must be of the form ¢(a) = ca + ¥(a), where ¢ € Zx and
1 is a mapping from A into Zy:. However, this result is not completely satisfactory since its converse
is not true. Perhaps one would like to have ¢ in the center of the multiplier bimodule of X (that is,
c € M(X) :={z € 2" : za,ar € X Ya € A} and ca = ac for all @ € A), but this is not always possible
even in the case X = A as shown in [2, Example 6.2.9]. In the case X = A a more precise description of
mappings satisfying (3.4) was given by Ara and Mathieu in [1] (see also [2, Section 6.2]) and involves the
center of the local multiplier algebra of A. This suggests that one would need local multipliers of Banach
bimodules, but, as far as we know, such a theory has not been developed yet. However, if A is abelian, then
so is A" and by the proof of Theorem 3.3 in this case ©f has its range in Zy::, hence ¢ must have its
range in Zx N X, which proves the following corollary.

Corollary 3.5. Fvery bounded linear commuting mapping ¢ from an abelian C*-algebra A into a Banach
A-bimodule X has its range in the center of X.

Theorem 3.6. Let Ry and R; denote the finite and the properly infinite part of a von Neumann algebra R.
Every weak* continuous linear functional w on RQR which is invariant under all operators of the form
u ® u, where u € R is unitary (that is, w((u ® v)r(u @ u)*) = w(z) for all z € ROR and unitary u € R)
annihilates R;@R + R®R;, while the restriction w|(RfRy) is of the form

wla®b) = a(r(a) @ 74(b)) + B(7y(ab)) (a;b € Ry),

where Ty is the central trace on Ry, B is in the predual (Zy)y of the center Zy of Ry and o € (Z2;RZ5)y.
Moreover, with sg € Z¢ the support projection of 5, Rysg must be a direct sum of finite dimensional factors
the dimensions of which are bounded. The converse is also true.

Lemma 3.7. With the notation as in Theorem 3.6, let RQR be the operator space projective tensor product
and let 6 be a bounded linear functional on ROR. Then O((u @ w)x(u ®@ u)*) = 6(x) for all v € ROR and
all unitary u € R if and only if 0 annihilates R; ® R + R ® R; and the restriction 0|(Rs®@Ry) is of the
form
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0(a®b) = a(rj(a) @ 74(b)) + B(7s(ab)) (a,b € Rp),
where 8 is in the dual ch of Z; and a € (Z2;0Z¢)*.

Proof. Under the natural isomorphism ¢ : CB(R, R¥) — (R&R)* (which is defined in the same way as (3.1),
that is, t(¢)(r®s) = (¢(r))(s), where r, s € R) functionals § € (R®R)*, that are invariant under all u®u for
unitary u € R, correspond to maps ¢ € CB(R,R¥), that satisfy @(uru*) = up(r)u* (r € R), hence satisfy
(3.9). (This can be verified by considering u of the form e, arguing similarly as in the beginning of this
section.) By Corollary 3.4 such a map ¢ annihilates R; (hence §(R; ® R) = 0 and similarly /(R @ R;) = 0),
while its restriction to R is of the form ¢(a) = (a+ po7s(a), where ( is in the center Zr: of Rf and p is a
linear bounded (hence completely bounded since Z; is abelian) map from Z; into Zr:. Now Zx: consists
of all ¢ € RF satisfying ac = oa, that is o(ba) = o(ab) for all a,b € R. Writing o as o = 01 — 09 +i(03 — 04)
where all o; are positive (in a canonical way, so that o1 and o2 have orthogonal supports in R and similarly
oo and o3, see [15, p. 140]) it follows readily that all the o; are scalar multiples of tracial states. But there
are no such states on the properly infinite part R; of R (since 1 can be written as a sum of two projections
both equivalent to 1), hence o|R; = 0. Thus it follows that Zz: consists of all tracial functionals on Ry,
and it is a well-known consequence of the Dixmier approximation theorem that all such functionals are of
the form o 7¢, where 5 € Zﬁ. Thus Zgr: = fo oTf = ZR& and ( is of the form ((a) = B(7s(a)) (a € Ry),

where 3 € ch. For the functional § € (R®R)* that corresponds to the map ¢ € CB(R,RF) under the
natural isomorphism (R®R)* = CB(R, R*) we now have

0la®b) = p(a)(b) = (Ca)(b) + (p(7s(a))))(b) (3.10)

for all a,b € Ry, where p(7¢(a)) € ZR’} = fo o 7f, hence p(1s(a)) = v(a) o 77, for a functional y(a) € Zﬁ.
Thus from (3.10)

1(a) (75 (b)) = (p(75(a)))(b) = 6(a @ b) — B(7f(ab)) (a,b € Ry). (3.11)

Since 6 and f are completely bounded maps, it follows readily from (3.11) that v : Ry — fo is a linear
completely bounded map. Further, for each unitary u € Ry we have from (3.11) and the invariance of 6
that

Auaw) (74 (6)) = Y(uaw*) (v (ubu*)) = 0((u © w)(a © b)(u @ u)* — B(ry(uabu®))

= 0(a®@b) — B(7s(ab)) = v(a)(7y(b)) (a,b € Ry),
which implies (since the range of 7y is Z¢) that y(uau™) = y(a). Since by the Dixmier approximation theorem
the norm closure of the convex hull of the set {uau® : w unitary in R} intersects Z¢, and the only point

of the intersection is 7¢(a), it follows that v(a) = «(7f(a)), where o := 7| Zf € CB(Zf,fo) > (Z;0Z5)8.
From (3.11) we have now (regarding a as an element of (Z;&Z5)*)

0(a®b) = a(tp(a) @ 74 (b)) + B(7s(ab)) (a,b € Ry), (3.12)
which proves the lemma in one direction, while the reverse direction is trivial. O

Proof of Theorem 3.6. Let w € (R®R)* be weak* continuous and invariant (as in the statement of Theo-
rem 3.6). Since the spatial tensor product R ® R is weak™ dense in RQR, w is determined by the restriction
w|(R®R). The natural complete contraction ¢ : R®R — R ® R has dense range, hence w is determined by
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the composition 6 := w o ¢, which has the appropriate form by Lemma 3.7, hence so will w, if we can show
that § is weak™ continuous and that « is bounded in the spatial norm of Zy ® Z; and weak™® continuous.
When a,b € Zy, (3.12) (applied to w o ¢ instead of ¢) simplifies to

wla®b) =ala®b)+ B(ab) (a,be Zf). (3.13)

Since Zy is abelian (hence of the form C(T) for a compact space T'), the multiplication p: Zy ® Zy — Z;
is contractive (since p corresponds to the restriction map C(T x T) > f — (f|A) € C(T), where A is the
diagonal of T' x T'). Hence fop: Z; @ Zy — C is bounded, and (3.13) implies that « is bounded in the
spacial norm, so we can extend a to a € (Z; ® Z7)¥. Then from (3.13) we have w|(Z; ® Z¢) = a + Bo u,

hence taking the normal parts of maps (see [10, Chapter 10]), we get

w|(Zf & Zf) = Qpor + (Bu)nor-

In particular 8(z) = w(z ® 1) — anor(z ® 1) for all z € Z;, which implies that 5 must be weak* continuous.
Replacing o with ooy and denoting its weak™ continuous extension to Z;®Z simply by « again, we have
now, using (3.12), that w(a ® b) = a(7f(a) @ 7¢(b)) + B(7¢(ab)) for all a,b € Ry, however this identity can
not, in general, be extended to all elements of Ry ® R since the map a ® b — 7¢(ab) can not be extended
to a bounded map Ry ® Ry — Z as will be shown in the next paragraph.

Ife;; € Ry (4,5 = 1,...,n) are such that e; jer; = 0 €, e;; = ej; and S, ei; = 1, then with
Wy, 1= szzl e;; ® ej; we have

(75 0 ) (wn) = n7(Y_eis) =,

=1

while w,, = w} and w2 = 1, hence |Jw,|| = 1. Since for each n such an element w can be found in a type II;
factor, it follows that 8 must be 0 if R is a type II; factor, otherwise Bp would not be bounded. Using the
direct integral decomposition one can generalize this to the case when R is not necessarily a facor, but still
of type II;. Alternatively, if R is injective and separable, then by [16, XVI, Corollary 1.43] Ry = Ro®2Zy,
where Ry is the injective type II; factor, and for a general type II; algebra we can consider an injective
separable von Neumann subalgebra. If the support sg of 3 is not orthogonal to the type II; part R, of Ry,
then B|sgZr, is a nonzero normal functional, hence given by a function 0 # g € L' (v) where v is a positive
finite measure on some space such that ssZg, = L®(v). With h € L™ (v) defined as h(t) = g(t)/|g(t)| if
g(t) #0, and h(t) =0 if g(¢) = 0, we have

Bryp(h ® wn) =n / l9(t)] du() "= oo,

so B7rp can not be extended to a bounded map on Ry ® Ry in this case. Thus sgRy must be of finite
type I, that is, a direct sum of algebras of the form M,, (Z}), where Zj, are abelian; moreover essentially
the same argument shows that sup, ni < oco. Then f7fpu is bounded, but still not weak* continuous if
the centers Zj, are not atomic. To show this, identify Z; with L>°(v) for a finite positive measure v on a
set A. Then Z,®Z) = L>®(v x v), B|Z is given by a function g € L'(r) and the map S7ru|(Z,R2Z) is
given by h — [ h(t,t)g(t) dv(t). If v has no atoms, then by considering a sequence of suitable functions
hy, the supports of which are concentrated nearer and nearer the diagonal of A x A, we see that S7¢u can
not be weak™® continuous. Thus, if S7yp is weak™ continuous, the non-atomic part of v must be absent,
hence v must be atomic. This proves the theorem in one direction. The reverse direction follows from the
weak™ continuity of the central traces 74 and 7;®&7; and the weak™ continuity of multiplication on atomic
abelian von Neumann algebras. (The multiplication £>°®£>° — £ is the second adjoint to the multiplication
co ® cop — ¢, hence weak* continuous.) 0O

Please cite this article in press as: B. Magajna, Relative commutants of finite groups of unitary operators and commuting maps,
J. Math. Anal. Appl. (2021), https://doi.org/10.1016/j.jmaa.2021.125123

© 0 N o a b~ W N =

A DA D S B DB DB DSBS WOWW W W W W W W WNNDNDNDNDNDNDNDNDDN R ER s R s R s s
o N o a0 b~ W N B O © 00 N o g P~ W N FEHF O LV 0O N P W N H O VY 0 N s WN +H o



JID:YJMAA AID:125123 /FLA Doctopic: Functional Analysis [m3L; v1.303] P.10(1-10)
10 B. Magajna / J. Math. Anal. Appl. sse (ssse) essses

References

[1] P. Ara, M. Mathieu, An application of local multipliers to centralizing mappings on C*-algebras, Q. J. Math. Oxf. 44
(1993) 129-138.
[2] P. Ara, M. Mathieu, Local Multipliers of C*-Algebras, Springer Monographs in Math., Springer-Verlag, Berlin, 2003.
[3] M. Bresar, Centralizing mappings on von Neumann algebras, Proc. Am. Math. Soc. 111 (1991) 501-510.
[4] M. Bresar, Functional identities and zero Lie product determined Banach algebras, Q. J. Math. 71 (2020) 649-665.
[5] M. Bresar, M.A. Chebotar, W.S. Martindale, Functional Identities, Birkh§user Verlag, Basel, 2007.
[6] E.G. Effros, Z-J. Ruan, Operator Spaces, London Mathematical Society Monographs. New Series, vol. 23, Oxford University
Press, New York, 2000.
[7] T. Fack, P. de la Harpe, Sommes de commutateurs dans les algebres de von Neumann finies continues, Ann. Inst. Fourier
30 (1980) 49-73.
[8] H. Halpern, Commutators in properly infinite von Neumann algebras, Trans. Am. Math. Soc. 139 (1969) 55-73.
[9] M. Horodecki, P. Horodecki, Reduction criteria of separability and limits for a class of distillation protocols, Phys. Rev.
A 59 (1999) 4206.
[10] R.V. Kadison, J.R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol. 2, Academic Press, London, 1986.
[11] G. Pisier, Introduction to Operator Space Theory, London Mathematical Society Lecture Note Series, vol. 294, Cambridge
University Press, Cambridge, 2003.
[12] C. Pop, Finite sums of commutators, Proc. Am. Math. Soc. 130 (2002) 3039-3041.
[13] S. Popa, The relative Dixmier property for inclusions of von Neumann algebras of finite index, Ann. Sci. Ec. Norm. Supér.
32 (1999) 743-767.
] E. Stgrmer, Positive Linear Maps of Operator Algebras, Springer Monographs in Mathematics, Springer, Berlin, 2013.
] M. Takesaki, Theory of Operator Algebras, Vol. I, Encyclopaedia of Math. Sciences, vol. 124, Springer, Berlin, 2002.
] M. Takesaki, Theory of Operator Algebras, Vol. III, Encyclopaedia of Math. Sciences, vol. 127, Springer, Berlin, 2003.
] R.F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden variable model, Phys. Rev.
A 40 (1989) 4277-4281.

Please cite this article in press as: B. Magajna, Relative commutants of finite groups of unitary operators and commuting maps,
J. Math. Anal. Appl. (2021), https://doi.org/10.1016/j.jmaa.2021.125123

© 0 N o b~ W N =

A A D DA D D D D DWW W WWWWWWWN DN DNDNDNDNDNDNDNDDN R e
o N o o b~ W N EH O © 00 N O g b~ W NN H O VW oo N o a0~ W NN H O VW o N o N W N = O



© 0 N o aa b~ W N =

A A B D D D D D DWW W W WWWWWWNNDNDNDNDNDNDNDNNDN AR R 2 2 2 O
o N o o b~ W N H O © 00 N O g P W N FH O VW 0O N g P W N H O VU o N N WN = O

JID:YJMAA AID:125123 /FLA Doctopic: Functional Analysis [m3L; v1.303] P.11(1-10)

Sponsor names

Do not correct this page. Please mark corrections to sponsor names and grant numbers in the main text.

Slovenian Research Agency, country=Slovenia, grants=P1-0288

Please cite this article in press as: B. Magajna, Relative commutants of finite groups of unitary operators and commuting maps,
J. Math. Anal. Appl. (2021), https://doi.org/10.1016/j.jmaa.2021.125123

© 0 N o aa b~ W N o=

A DA D B B DS B DSBS WOWW W W W W W WWN N DNDNDNDNDNDNDNDDNDN R ER R R s R s s
o N o o b~ W N B O © 00 N O g P~ W N FEHF O LV 0O N P W N H O VU o N OO WN +H O



	Relative commutants of finite groups of unitary operators and commuting maps
	1 Introduction
	2 The relative commutant of the flip and of a finite unitary group
	3 Commuting mappings
	References


